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REPORT 934 

RECOMMENDATIONS FOR NUMERICAL SOLUTION OF REINFORCED- 
PANEL AND FUSELAGE-RING PROBLEMS 

I3y N. J. HOFF and PAUL A. LIBBY 

SUMMARY 

Procedures are recommended for solving the equations of equi- 
librium qf reinforced panels and isolated *fuselage rings as rep- 
resented by the external loads and the operations table established 
according to Southwell’s method. From the solution of these 
equations the stress distribution can be easily determined. The 
recommendations are based on the experience qf the past 4 years 
in applying numerical procedures to monocoque sfress analysis 
at the Polytechnic Instifute of Brookl?yrl Aaronautical Labora- 
tories. The method of sy.stPmatic rrlaaations, 2ho mafrix-cal- 
culus mefhod, and spreral ofh.pr m&hods applicable in special 
cases are discussed. 

%$nite recommendations a,rp made-for obtairtin{g th.p soluf ioll, 
of reiriforced-panel problems which are generally rlP.signated as 
shear lag problems. The procedures recommend& are demon- 
strated in the analysis of a number of panels, seueral of which 
wpre discussed in prP1Gou.s I’IBAL rqorfs, wh.ereas ofhers are 
shown for theJirst time. 

In the case offuselage rings it is not possible to make d&life 
rPcommerrn’atio1ls -for fhc solufion of tha equilibrium equations 
.for all riligs and loadings. HOWPWI’, suggesfions ba..s& on the 
latest e.l:pptGnce are made and dernonstmtetl on sPl~Pral rin{gs. 

INTRODUCTION 

The application or t 1~ intlircc1 n~tliotls of Cross (refer- 
ence 1) and Southwell (refercncc 2) to the nualysis of mono- 
coque structures has been shown in a series of investigations 
(references 3 to 8) carried out at lhc Polytcc~hnic Institute 
of Brooklyn Aeronautical Laboratories. ‘!J1rsc indirect 
methods arc likely to lead to solutions of problems in stress 
analysis that are intractable by direct analyt.ical methods 
because the structure is tapered, it has large cutouts, its rein- 
forcing clcmcnts arc distributed irregularly, or the like. 

The distorted shape corresponding to equilibrium under 
the applied loads is determined first in the indirect methods. 
From it the stresses, forces, and moments required can bc 
calculated without difficulty. This approach is justified by 
the comparative ease with which the stresses in a complex 
structure can be determined for an individual displacement 
of one point and with which the final distorted shape of a com- 
plex structure can be represented by a summation of such 
individual displacements. 

The complete structure is considered to bc composed of 
appropriate elements ancl its degrees of freeclom arc the dis- 
placements of the several reference points on the boundary 

of each element. Each of these points is displaced in turn 
ancl the reactions at the reference points caused by the dis- 
placcmcnt arc listed. If by suitable displacements of all 
points the reaction forces and moments are maclc equal and 
opposite to the external loads at each point, the whole struc- 
ture is in equilibrium and its distortccl shape is determined. 

In applying the indirect methods to monocoque structures 
the terminology of Southwell (reference 2) has been retained. 
Thus, the elements which compose the complete structure 
are “units” ant1 the tlrtrrmination of the forces and moments 
due to a tlisplaccmrnt of a boundary point of such units is 
I errned (he “ lmit problem.” The magiiit iidrs of these forces 
an(1 moments arc giveii bg “influence coefficients.” TllC 
complete eH’ect of a tlispl”(~clmcrit is given in an “operations 
table,” and the step-by-step process, which can be cm- 
ployrd to tlctcrminc the equilibrium distortctl shape, is 
called the “method of systematic relasations.” At each 
slcp of this process forces and moments referred to as “rc- 
sitluals” remain unbalanced al each point in the structure. 
A running account of the residuals and of the displacements 
01 “operations” untlcrtnkrn is kept in the “relaxation table.” 

The operations table along with the external forces con- 
st itutcs a system of linear equations, which are equal in 
number to the tlcgrccs of frcctlom of the strurturc and which 
have as variables t.lie tlisplaccmcnts. Each equation rcprr- 
senls tlie contlition of equilibrium for llic force or moment 
assoeialctl with one tlrgree of frrctlom. When t.lie method of 
systcmalic rclssations is applied an approximate solution 
to this system of equations and accortliugly an approsimatc 
equilibrium state of the structure arc found. 

The indirect method of analysis just, outlined has been 
applied at PIBAL to the reinforced-panel and ring com- 
ponents of a monocoque structure as well as to complete 
circular cylinders with and without cutouts. In rrfcrcnces 
3 and 4 the stress distribution in the sheet, and stringers of a 
reinforced panel was determined uiiclcr loacls applied parallel 
to the stringers. Fuselage rings with and without internal 
bracing elements were investigated in reference 5. The 
determination of the influence coefficients for the ring unit 
problem was found to involve considerable computational 
work and therefore appropriate graphs and tables are given 
in reference 6 to facilitate their calculation. In references 7 
and 8 the elements, namely, the reinforced panel and the 
ring, are combined into a circular cylinder and the stress 
distribution in the cylinder was investigated for the case 
when the loacling is a pure bending moment. 

1 
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In the application of the indirect-stress-analysis methods 
to the problems mentioned the major obstacle has been to 
find an approximate solution of the system of equations with 
a reasonable expenditure of effort. In each problem it has 
been readily possible to establish satisfactory units and to 
combine them to represent the complex structure. During 
the past 4 years considerable experience has been gained at 
PIBAL in overcoming this obstacle to the wider application 
of numerical procedures in the analysis of monocoque struc- 
tures. On the basis of this experience some recommendations 
can be made as to the most expeditious method of solving 
reinforced-panel and fuselage-ring problems after the opera 
tions table has been established as described in references 3 
to 5. 

In many problems solution of the set of linear equations 
by means of matrix algebra was found easier and less time 
consuming than the determination of the displacements by 
systematic relaxations. In other cases special methods, such 
as the growing-unit method, proved to be most expeditious. 

It is assumed that the reader is familiar with the termi- 
nology of Southwell’s relaxation method and with the solu- 
tion of the unit, problem as well as the establishment of the 
operations table for both the reinforced-panel and fuselage- 
ring problems. Complete details of these are given in 
references 3 to 6. 

This work, carried out at the Polytechnic Institute of 
Brooklyn, was sponsored by and conducted with the financial 
assistslnce of the National Advisory Committee for Aero- 
nautics. Mr. Arnold 0. Ostrand contributed the growing-unit 
method for reinforced panels. The aut.hors also wish to 
acknowledge their indebtedness to the following members of 
the staff of the Polytechnic Institute of Brooklyn: Professors 
George B. Hoadlep and William MacLean of the Depart- 
ment of Electrical Engineering for their work on the electric 
analogue, Mr. Burton Erickson for carrying out thr major 
portion of the computations, and Dr. Bruno A. Boley for his 
editorial a.dvice. 

A cross-sectional arca of stringer and cffcctivr sheet 
A to Q points on a ring or a reinforced panel; group 

operations 
A* 
a 
b 
C 
E 
F 
G 
H 
I 

effective shear area of ring section 
dist.ance between adjacent longitudinal stringers 
distance between adjacent transverse stringers 
electrical conductance 
Young’s modulus of elasticity 
tensile force in stringer; applied cxtcrnal load 
shear modulus of elasticity 
horizontal direction 
moment of inertia of cross section; clcclrical 

current 
I to XX 
L 

M 
N 

k 
II I 

group operations 
length of straight bar or length of arc of curved 

bar 
bending moment 
moment acting on a joint 
shear flow 
radial force acting at a joint; electrical rcsistanc.e 
tangential force acting on a joint 

SYMBOLS 

t 
U 
V 
V 

sheet thickness 
displacement of a joint in tangential direction 
electrical potential; vertical direction 
displacement of a joint in radial direction; dis- 

placement of a joint in vertical direction 
vb lock vertical block displacement 
W rotation of a joint 
2 magnitude of group operation t,o be determined 
2, Y rectangular coordinates 
Y force in y-axis direction 
P angle subtended by ring segment 
Y section-length parameter (AL’/I) 
E ratio of effect,ivc shear area to tension arca (A*/A) 
z summation 

REINFORCED PANELS 
INTRODUCTION 

In this section plane and slightly c~11~cc1 reinforced panels 
arc discussed when the loads arc applied in the plant of the 
flat panels or tangentially to the surface of the slightly 
curved panels. 

In most airplane structures there is a predominant direc- 
tion in which the major forces act and in which the majoi 
reinforcing elements lie. When the panel is symmetric and 
svmmetricallg loaded experience has shown that it suffices 
to consider displacements and force equilibrium in the 
predominant direction only. Even when the structure or 
the loads are nonsymmetric, the displacements and forces 
in the transverse direction are usually of secondary impor- 
tance but they may be considered in a more refined analysis. 

In references 3 and 4 numerical procedures for the deter- 
mination of the stress distribution in reinforced panels 
subjected to axial stringer loads are developed and demon- 
strated on several flat and curved panels with and without 
cutouts. The results obtained by means of these procedures 
arc in good agreement with those of tests. 

Solution of the system of equations represented by the 
operations table and the external forces can be found by 
several methods, five of which are described herein. The 
various conditions of loading and structure which suggest 
the use of one method rather than another arc discussed. 

RELAXATION METHOD 

For most reinforced-panel problems the relaxation method 
of solution is the most suitable. Simple group and block 
operations lead to a rapid elimination of the residuals and 
require little initiative on the part of tllc computer familiar 
with the sequence of step-b.v-step operations. The met,hod, 
however, is not efficient in the cast of panels with many 
bays in the direction of the stringer loads or panels with 
sheet covering of large shearing rigidity, since large forces 
are then introduced into adjacent stringers when one 
stringer is balanced. These forces in turn must be liquidated 
in successive operations with the consequence that the 
procedure becomes time consuming. Also in problems 
involving many loading conditions it may be expeditious 
to use the electric-analogy method described in the section 
entitled ‘I Electric Analogue, ” since in the relaxation 
method ea.& new loading requires new step-by-step 
operations. 
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In this section panels are discussed which are not excluded 
from application of the relaxation method by the foregoing 
considerations. They may be classified according to the 
boundary conditions of the stringers into four groups. 
Recommendations for each group follow with a fifth sub- 
section added containing suggestions for panels in which 
transverse forces and displacements are considered. 

(a) Panels with boundary conditions at both ends of 
stringers specified in terms of force.-The following two 
procedures are recommended for liquidating the residuals on 
a panel of this group: 
First procedure: 

1. Consider each stringer isolated by cutting the sheet and 
t,he transverse reinforcing elements. Select the stringer for 
which the algebraic sum of the external forces is the largest. 
Displace the entire stringer as a rigid body (block displace- 
ment) until this sum vanishes. 

2. Balance one end joint of the stringer by displacing the 
adjacent joint on the same stringer. 

3. After step 2 is completed the end joint is balanced but 
the joint that was moved is unbalanced. Displace the third 
joint on the same stringer until the second joint is balanced. 

4. Continue the proccdurc until the second end joint is 
moved. In this la.st step both the end joint and the adjacent 
one will bc approximat.cly balanced at the same time since 
the algebraic sum of all the forces acting upon the stringer 
was zero after completion of step 1 and t.his equilibrium has 
been disturbed only slightly by the shear forces transmitted 
by the sheet during the individual operations. 

5. Stringer 1 is now approximately balanced. Carry out 
the same procedure with the other stringers of the panel 
successively. 

G. When all the stringers arc approximately balnucctl, 
return to the first stringer and bala.ncc it again by undrr- 
taking steps 1 to 4. Rcpcat the proccclure with the othci 
stringers until all the residual forces can bc considered ncgli- 
gible for cngincering purposes. 

Second procedure: 
1. Consider each stringer isolated by cutting the sheet and 

the transverse reinforcing elements. Select the stringer for 
which the algebraic sum of the external forces is the largest. 
Displace the entire stringer as a rigid body (block displace- 
ment) until this sum vanishes. 

2. Displace one end point of this stringer so as to balance 
the residual thereon. 

3. Displace by equal amounts the acljaccnt joint on the 
same stringer and the end joint which was balanced in step 
2 so as to balance this second joint. The equilibrium of the 
end joint will be disturbed only by a small amount due to 
shear in the sheet. 

4. Displace by equal amounts the third joint on the same 
stringer and the two joints that were placed in approximate 
balance by the operation clescribed in step 3 so as to balance 
this third joint. 

5. Continue this procedure until the joint next to the 
midjoint of the stringer is balanced by equal displacements 
of all the joints situated between it and the end joint first 
displaced. \ 

6. Repeat the process described in steps 2 to 5, starting 
from the other end joint of the stringer and continuing to 
the midjoint from this direction. After this step is completed 
this stringer will be in approximate balance, the only resid- 
uals being those introduced by shear in the sheet. 

7. Consider next the stringer on either side of the approxi- 
mately balanced stringer. Undertake. a block displacement 
so as to equilibrate externally the stringer under its residual 
forces. 

8. Start at one end joint of this stringer and apply steps 
2 to 6. This second stringer will be placed in approximate 
balance thereby, while the balance of the first stringer will 
be disturbed only through the shear in the sheet. 

9. Either return to the first balanced stringer or proceed 
to the next stringer on the other side. Each newly consid- 
ered stringer is first externally equilibrated under the external 
and residual forces by a block displacement. Then from 
each free end the residuals are balanced by group displace- 
ments involving equal displacements of all the joints situated 
between the one in question and the free end. Continue to 
balance individual stringers until all are balanced. 

The relaxation tables for thr panel shown in figure 1, for 
which table 1 is the operations table, arc used to dcmon- 

1.2 

Yr 
Y B” 

I 

-I+ 
8” 

V 

T 
8” 

60 /b 

b 

3 

’ /I 

lb 

BI~TJRE I.-Reinforced panel with conditions at both ends speciflod in terms of forec. 

strate the first and second procedures and are given as tables 
2 and 3, respectively. It will be noticed that this operations 
table considers the displacements of only the joints on the 
left half of the panel. The panel is symmetrical and is 
symmetrically loaded. Therefore, the displacements in the 
balancing process are undertaken symmetrically and only 
those of the left side joints need be considered, those of the 
right being correspondingly equal. Since this panel has 
only three bays along each axially loaded stringer, the 
internal balancing process is undertaken from one end of 
the stringer only. 

i --- 
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(b) Panels with boundary conditions at one end of stringers 
specified in terms of force and at other in terms of displace- 
merit.-This type of problem occurs, for instance, when one 
end of the panel is attached to a rigid body which is either 
held fixed in its position or is displaced a given amount. 
The recommended procedure for panels of this group is the 
same as the second procedure for panels in cast (a) with 
two exceptions: (I) No block displacements arc needed (or 
possible) to cquilibratc the stringers externally and (2) the 
internal balancing process can be started only from the one 
free end of each stringer. 

Thr mrthod is dcmonstratrtl on thr panrl showu in figure 2. 
It is idrntical with the panrl used for cnsc (a) with tlir rscrp- 

FII;rRE 2.- 

120 fb /20 lb 

at 

tion of thr fisrtl lowrr rnds of thr vrrtiral striugrrs. Thr 
oprrations tablt is itlrntical with that of tlir prrvious pnnrl 
esrrpt that no block and no ?‘N- and PO-tlisplarrmrnts arc ad- 
missiblr. Thr rclnsa t ion tablr is givrn as tablr 4. 

(c) Panels with boundary conditions at both ends of 
stringer specified in terms of displacement.-F,spcll.irllrr on 
panrls of this typr intlicntrs that, nltbougli no systcmntir 
process of hnlanring tlir rrsitluals ran br rrrommrndrtl, Thr 
tlircct. rrlasation prorrss is rapidly ronvrrgrnt. By starting 
from thr midpoint joints on a stringrr and by balancing 
succrssivr joints townrtl thr tn-o fisrtl rntls, thr rquilib~ium 
posit.ion ran br approsimatrtl rapidly. .A furthrr suggrs- 
tion rrgarding this typr of panel is containrd in thr latrl 
section “Kilts Tablrs.” 

(d) Panels with irregularly specified boundary condi- 
tions.-For such panrls a combination of the mrthods 
discussrd undrr casrs (a), (b), ant1 (c) is ~rrommc~ntlctl. Ry 
judicious use of blork and group oprrations similar to those 
of casrs (a) and (1)) rapid ronvrrgrncr of thr rrlasation 
procrtlurr will br obtniiirtl. 

(e) Pan.els in which transverse displacements and forces 
are considered.---Thrl*c arc two gcnrral prorrtluws for 

treating panels in which the transverse displacements and 
forces, usually considered negligible, are treated. These are 
described in the following paragraphs: 
First procedure: 

The procedure discussecl under cases (a) and (b) can be 
applied to panels with cutouts. The stringers are approxi- 
mately balanced in the direction of the major axial forces 
by these procedures and then the resicluals normal to this 
direction are considered. The same step-by-step operations 
can be applied in balancing transverse stiffrntrs under these 
transvcrsr axial forces. The process of first, balancing the 
stringers in one clirection, then balancing the stiffcnrrs in 
the normal direction, and thrn rrturning to the originally 
balanced stringrrs will br quite rapidly convrrgrnt for 
panels with shrct. of low shearing rigidit,y. 
Srcond proccdurr: 

For panrls with cutouts requiring consitlrration of the 
transvrrsc forces another proredure, which is drmonstratrd 
in refcrencr 4, can be usrd. The panrl is first considrred to 
have continuous sheet and stringers, as if the cutout did not 
exist., and the clisplaccmcnts for equilibrium of this panel 
unclrr thr rstcrnal loads are dctcrmincd by the usual meth- 
ods. Thrsr displarrmrnts arr thrn applictl as a first approsi- 
mation to thr distortrcl shape of thr actual panel with cut- 
outs. Displarrmrnts lratling to a closer approximation arc 
thrn undr~*ta.krn. This procrtlurc is found to bc rrasor:ably 
successful for the cases invcstigatccl in rrfcrcncc 4. 

MATRIX-CALCULUS METHOD 

The operations tablr togct,hrr with the cstrrnal forcrs can 
br considcrcd as a systrm of linear rquilibrium rquations 
with thr magnitudes of thr displacrmrnts as thr unknowns. 
‘I’hrrcforr, thr mrtliotls of matris calculus ran hc applied to 
find thr solution of this systrm by dirrct mathematical 
mrans. ‘I’hr mrthod tlrsrribrd in rrfrrrnrr 9 is rccom- 
mrndrtl sinrr a clirck on thr calculations is maintainrd at 
cach strp in tlir procrss of solution. 

Alatrix mrthods of solution havr scvcral advantagrs. 
Aftrr thr oprrations tablr is cstal~lishrtl by trainrd cnginrcr- 
ing prrsonnrl, thr solution can br obtainrtl by romputing 
prrsonncl familiar with thf matrix-calrulus mrthotl. Undri 
somr conditions this rconomir atlvantagr may hr important. 
For rrinforrcd panrls with shrrt of high shraring rigidity 
thr rrlasntion procrclurrs arc slowly ronvrrgrnt rvrn whrn 
thr ~rcor~lnlc~ntlatiolls givrn in thr prrcrding srction arr ob- 
srrvrtl ‘I’lir matrix-calrulus mcthotl is not nflrctrtl by this 
physical cliaractcristic of the structurr. 

Whrn thr numbrr of rquations is grratrr than 30 or 40, 
thr work of computation bccomrs inconvrnicnt,ly largr. 
Thrrrforr, for panels having a sheet covrring of small shrar- 
ing rigidity rclasat,ion mrthocls arc rrcommrndrd. Whrn 
the shcrt, covering is vrry rigid in shrar the matrix method 
is likely to br more advantagrous brcause thr routinr oprra- 
Cons of the matrix mrthocl can always be carrird out if 
enough timr is allowed. 

Thr cqun.tions of rquilibrium for thr panel shown in figurr 
1 are givrn by table I and arc prcsrntcd as follows to illus- 
tratr how the operations tablr and thr cstrrnal forcrs can 
bc consitlcrcd as a system of equilibriiini equations: 
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/20 lb - 55.2v,+2.00vE+51.2v, =o lb 

2.00vB-101.6vE+4.00v~+46.8vJ+2.00vK =O 

51.2v,+4.00vE-l10.4vF+2.00v.r+51.2vK =o 
1 1” yc 2 

46.8vE+2.00vF-101.6vJ+4.00vK 
8” 

+46.8vN+2.00vo=0 

2.00vE+51.2v,+4.00vJ-110.4~~ 

i 

(1) -A- ‘( 

+2.00vN+51.2vo=O~ 
Ik FIG 

8” 

46.8vJ+2.00vK-50.8~~ I 
+2.00vo+60X104=0 

2.00v.,+51.2vK+2.00vN 
+f+J K1.L M  

-55.2vo+60X104=0 

In considering the operations table and the external forces 
as a system of equilibrium equations, care must bc taken to 

i” 
I 

0 P P 
I N 

8” 
restrain enough joints so that the position of the panel as a 
rigid body is fixed. In the prrsrnt case o,~ and vD arc as- LR S T 
sumrtl to be zero, and since only tlisplacrmcnts in the ?I/- / 
direction are consiclcrrd in this problem, this restraint is 
sufficient. 

GROWING-UNIT METHOD 

For reinforcecl panels with shrc~t of high shearing rigidity 
or wit,h a large number of bays in the clirection of the axial 
forces, the relaxation procedure is not rapidly convergent. 
In such problems either the matrix-calculus or the> growing- 
unit method is rccommcndcd. The lst.ter can be applied 
only to panels the boundary conditions of which arc spccificcl 
in terms of forcr at least at one Cal of the stringers. 

Table 6 is the rc>lasatiou table in which thrsc group oprra- 
tions arc usccl. 

The group operations given in table 5 require some es- 
planation. In order to avoicl introducing a J7B-rc\siclua1 
when joint A is rclasc~cl by application of operation (l), a 
v,-displacement is applied, the magnitude of which can be 
calculated from the equation 

The growing-unit method applird to reinforcrcl panels is 
as follows: Thf joint at. the free Cal of an arbitrarily sclc‘rtcd 
unbalancrd stringrr, callctl hcrcinafter thcl princGpa1 joint 
and the principal stringrr, respect ivcly, is tlisplac~c~tl so as t 0 
liquidate the rcsiclual on this joint. At the> samcl time the 
joints lying on acljac~rnt parallrl stringers and tlir same 
transvrrsc stiffener arc clisplacctl so that the rc4clun.ls that 
would be otherwise introduced by shrar from the balancing 
of the principal joint as well as any external forces applied 
to thcsc joints are likewise liquidated. In the second opera- 
tion the nest joint on the principal stringer is rc4axecl while 
the previously balanced joints on thr first transverse stiffenrl 
and the joints on the second transverse stiffcncr arc kept in 
balance by suitablr displacements. After this scconcl opera- 
tion no residuals remain at the joints of the first two trans- 
verse stiffeners. After a sufficient number of repetitions of 
the procedure all residuals will be confined to reaction points 
or will bc liquidated; the panel will then be in equilibrium. 

-55.2,u,+2.00=0 (2) 

Thus operation (9) is ~~=(2/55.2)=0.0362 and (10) is a 
group operation equal to the sum of operations (1) and (9), 
which liquiclatcs the rc>siclual Y, without introducing a 
YB-unbalance. 

After operation (10) is used, unbalances exist at joints 
E ancl F, that is, on the second transverse stiffener. In 
order t.o balancr thcsc without disturbing the recently 
cstablishccl balance at A and B, two group operations are 
clevclopcd: One permitting the balancing of E and one per- 
mitting the balancing of F. The magnitudes of v, and vg 
required to maintain the balance of A and B when a displace- 
ment of v,=l is undertaken arc given by the following 
equations: 

-50.8v,,+2.00v,+46.8=0 
(3) 

2.OOvn-55.2v,-+-2.00=0 
This procedure is demonstrated on the panel shown in 

figure 3. The physical properties of the panel are the same 
as thosr of the previously discussed panels rsccpt for the 
additional bay in the direction of the axial forces. Actually 
the convergence of the relaxation method for this panel 
would be quite rapid, but for convenience the growing-unit 
method, applicable when this convcrgcnce is slow, is demon- 
strated thereon. Table 5 is the operations table for this 
panel and contains not only the individual operations but 
also the group operations of the gsowing-unit method. 

1, II I I I III I III II II II411 1111111111 ----..-.-... .., _ .._... - .-- 

These arc satisfied by v,=O.921, operation (ll), and v,= 
0.0695, operation (12). Operation (13) is therefore estab- 
lishecl as the sum of operations (3), (1 l), ancl (12). The 
magnitudes of v, ancl vB required to maintain the balance of 
A and B when a displacement of v,=l is undertaken are 
given by the following equations: 

-50.8v,+2.00v,+2.00=0 
(4) 

2.OOva--55.2v,+51.2=0 
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These are satisfied by v,=O.O758, operation (14), and v,= 
0.923, operation (15). Operation (16) is the sum of opera- 
tions (4), (l4), and (15). Since group operations (13) and 
(16) both introduce Y,- and Y,-forces, the magnitudes xl3 
and X,~ of these groups required to liquidate the - 11 l-pound 
and -Q-pound residuals at E and F, respectively, are given 
by the following equations: 

-58.3~r~~+9.4~~~-111=0 

I 
(5) 

9.4x13--62.6x,,-Q=O 

Thus r13= -1.975 and x,~= -0.444. Joints E and F a.rc 
balanced without disturbing the balance of A and B by the 
use of these multiples of operations (13) and (16). 

In eliminating t,he residuals at joints J and K multiples of 
operations (13) and (16) are applied since these operations 
permit displacements of E and F to be undertaken while the 
balance at A and 6 is left undisturbed. When joint J is 
displacrd a unit amount, multiples of operations (13) and 
(16), defined by the following equations, are used so that 
the balance a.t A, B, E, and F is maintained: 

-58.3~~~+9.4~~~+46.8=0 

1 
(6) 

9.4x,3-62.6x,6+2.OO=O 

The solution to thcsc equations is 2,3=0.828, operation (17), 
and ~,~=0.158, operation (18). Operation (19) is the sum 
of operations (5), (17), and (18). 

In a similar manner all the individual and group displace- 
ments described in table 4 are found. It may be mentioned 
that in the present example no shearing stresses were set 
up in the middle bays because of the symmetry of structure 
and loading. The original operat,ions table was already 
established in a manner which complied with these rcquire- 
ments of symmetry. When such is not the case or when 
there is a greater number of stringers in the panel, displacc- 
ments of principal stringer joints will, in general, cause 
residuals to appear at more joints so that three or more, 
rather than two, simultaneous equations have to be solved 
at each step. 

NILES TABLES 

In reference 10, Kilts demonstrates for the solution of rrin- 
forced-panel problems a method which essentially parallels 
the previously described relaxation method. The Xilcs 
method is a procedure for balancing a stringer by the usr of 
tables which give the displacements of each joint on the 
stringer required to liquidate a residual on a given joint of 
the stringer. The tables are worked out for various end 
conditions and sheet shearing rigidities. 

Since reference 10 contains tables only for sheet of rela- 
tively low shearing rigidity, the Niles method is limited in 
this respect in the same way as the relaxation method. 
However, the tables can be employed on stringers with the 
boundary conditions at both ends specified in terms of dis- 
placement; for such problems no step-by-step routine relaxa- 
tion method has beer1 recommrnclrrl. Also by use of the 
tables exact balance of a stringer is gained after a single 
displacement of each joint, whereas in the relaxation method, 

because of the shear, small unbalances remain after each 
joint is moved. 

On the other hand, t,he relaxation method can be applied 
to stringers with irregularly spaced joints for which no tables 
were set up by Niles. 

Since in reference 10 several examples of the procedure are 
given, no application of the Niles method is shown herein. 

ELECTRIC ANALOGUE 

Another convenient method of solving the problem of force 
distribution in a reinforced panel is that in which the voltages 
are measured in an electric network which is so constructed 
as to make it a complete analogue of the reinforced panel. 
When suitable electric equipment is available, an analogous 
uetwork can be hooked up and testecl with very little work. 
A particularly attractive property of the stress-analysis 
procedure by means of electric measurement is the ease with 
which the effect upon the stress distribution of changes in 
loading and in dimensions of the various structural elements 
of the reinforced panel can be investigated. This permits 
the development of an efficient design with little analytic 
work. 

The analogy between the forces transmitted through the 
different structural elements of the reinforced panel and the 
currents flowing through the various branches of the direct- 
current network can be explained with the aid of figures 4 
and 5. The problem investigated is the so-called “one- 
dimensional shear lag.” It is assumed that the transverse 
stiffeners are infinitely rigid so that the vertical, or longi- 
tudinal, displacements v alone need to be determined. The 
portion of the sheet covering considered effective in tension 
or compression is added to the cross-sectional area of each 
stringer and the panels of sheet are assumed to carry shear 
stresses only. A consequence of these assumptions is that 
the shearing stress must bc constant in each panel. 
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Prr,nm I.--Fo:ces transmitted through structural elements of 
reinforced panel. 
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The analogous direct-current network contains as many 
binding posts as the number of joints in the reinforced pantll. 
Adjacent binding posts arc connected by conductors having 
prescribed resistances R. Predctcrmillctl clcctric~ currents I, 
which correspond to the forces E’ applied to joints A and 6 
of tlic reinforced panel, are introduced into the nctworlr at 
points A and B. 

It is now rrcallctl that in thr relaxation method the joints 
of tlit> panel are first assumc>tl to 1)~ rigitlly fiscal to a rigid 
wall bchintl the pancxl. Thcl cxtcrual loads arc first applic>tl 
to these rigid pegs, rc>fcrrctl to as the “constraints.” The 
panel is obviously in equilibrium under thcsc conditions but 
this artificial equilibrium is entirely different from that prc- 
vailing in the actual panel, which is not attached to any rigid 
wall. The actual state of equilibrium is approached by the 
step-by-step procedure of the relaxation method, in each 
step of which one single constraint is removed and the cor- 
responding joint is displaced until it reaches its equilibrium 
position in the system in which all the other joints are still 
rigidly fixed. 

For instance when joint 1 of the reinforced panel is moved 
through a distance v in the positive direction, this displace- 
ment imposes forces upon all the adjacent joints numbered 
from 2 to 9. Three typical forces are givrn by the equations: 

863931-50-Z 

F =v?bt 91 4a (S) 

F zvGbt 61 2a (9) 

whcro 

Fsl, Fgl, FBI forces acting upon joints 8, 9, and 6, respective- 
ly, because of displacement of joint 1 

E modulus of elasticity of stringer 
G shear modulus of sheet 
t thickness of sheet 
V displacement of joint 1 

In the case of the analogous network it can be assumed 
that the potential of each binding post is zero at the outset. 
If there is no potential difference, no current flows between 
the posts. It can be imagined that the current,s introduced 
at points A and B are taken out of the system by means of 
some imaginary conductors. However, the actual distribu- 
tion of .currents in the network prevails without the aid of 
the imaginary conductors. This actual state can be 
approached also by means of a step-by-step, approximation- 
type calculation. For instance it can be assumed first that 
the potential of binding post 1 is elevated to the value V. 
After this change there is a potential difference between 
binding posts 1 and 8 and consequently a current will flow 
from post 1 to post 8. The magnitude of this current can 
be calculatctl from t.hc equation 

I,,= Jr/R,,= P8,1 (10) 

where R,, is the rrsistance and CY8, = 1/R8, is the conductance 
of the conductor between posts 1 and 8. Similarly the cur- 
rnit flowing from post 1 to post 9 is 

Ig1= cg, v 

The current Rowing from post 1 to post 6 is 

(11) 

I6l=c,,v 02) 

Comparison of equations (7) to (9) with rquations (10) to 
(I 2) reveals an analogy between the effects of a displacement 
2) of joint 1 and thr raising of the voltage of binding post 1 
by an amount V. The current caused by the change in 
potential corresponds to the force caused by the displace- 
mcnt, provided that the conductance of each conductor is 
made equal to the influcncc coefficient in the corresponding 
force equation. Hence 

c =G@ 61 2a (15) 

In the relaxation procedure the equilibrium state is 
approached by displacing individually the joints and Tsum- 
ming the effects of each displacement. In exactly the same 
way the actual distribution of the currents in the network 
can be determined by changing individually the voltages of 
each binding post and summing the effects of these changes. 
In the reinforced panel equilibrium is obtained when at each 
joint the sum of the external forces and of all the internal 
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forces caused by the displacements is zero. The forces arc 
considered positive if they are directed as the positive dis- 
placements. In the form of an equation, 

zF=o 06: 
An analogous equation in the direct-current network ir: 

furnished by Kirchhoff’s first law, according to which the 
sum of the currents flowing into any binding post must be 
zero. Currents in the direction of any binding post are 
considered as positive. In the form of an equation, 

2I=O (17) 

Comparison of the last two equations reveals that the 
conditions of equilibrium for the reinforced panel and Kirch- 
hoff’s first law in the case of the direct-current network 
complete the analogy of the two systems considered. It is 
possible therefore to construct an electric network with the 
same configuration of binding posts as that of the joints of 
the reinforced panel. The conductances of the conductors 
connecting the binding posts must be so chosen as to make 
them proportional to the corresponding influence coefficients 
in the operations table of the reinforced panel. If then cur- 
rents are introduced at the binding posts which correspond 
to the joints at which external loads are applied, the distri- 
bution of the currents in the network will be the same as the 
distribution of the forces between the various structural 
elements of the reinforced panel. 

In the first applications of the relaxation process to rein- 
forced panels each joint was displaced until equilibrium was 
established. It was noted in the section dealing with the 
solution of the problem by matrix methods that this pro- 
cedure permitted rigid body displacements of the structure. 
Rigid body displacements can be eliminated if one or more 
joints are considered as rigidly fixed. In the case of the 
reinforced panel of figurc 4 the degree of freedom of motion 
of each joint is one, because the problem is considered as a 
one-dimensional shear lag problem. Consequently it suffices 
to fix one single joint so that it is prevented from displacing 
vertically. However, if joint C, for instance, is fixed, the 
symmetry of the structure and loading requires the simul- 
taneous fixation of joint D. 

In t.he analogous network binding posts C and D are givrn 
predetermined values of the potentials by connecting them 
to the ground. It is customary to at.t.ributr the value zero 
to the potcntia1 of the ground. Consequently V, and 1iD 
are zero just as in the reinforced panel 21~ and u. are zero. 

It will br noticed that in figure 4 the direction of F at 
joints A and B is upward, whereas the direction of I at bind- 
ing posts A and B in figure 5 is downward. This corresponds 
to the difference in the sign convention in the two systems. 
In the panel upward forces wcrc considered positive and in 
the network currents flowing toward the binding posts were 
given the positive sign. The directions of the forces and the 
currents at points C and D are the same. This again corre- 
sponds to the correct signs required by the sign convention 
since the downward forces at these points are negative just 
as the currents which flow away from the binding posts are 
negative. Hence the reinforced panel is under the action of 
external tensile forces, whereas through the network currents 
are flowing in the downward direction. 

In the case under discussion it is easy enough to introduce 
the two equal currents at posts A and B and to regulate 
their magnitude by means of an adjustable rheostat. How- 
ever, when there are a number of impressed currents of differ- 
ent magnitude stipulated, their adjustment may become a 
lengthy trial-and-error procedure. In such cases it is ad- 
vantageous to employ a number of commercially available 
electronic devices, known as constant-current generators, 
which have the property of maintaining a constant current 
independently of the properties of the network. 

When the construction of the network is completed and 
the required external currents are introduced, the deflection of 
any joint of the reinforced panel can be obtained by measur- 
ing the potential of the corresponding post in the network 
with respect to the ground. This quantity multiplied by the 
conversion factor is the relative displacement of the corre- 
sponding joint of the reinforced panel with respect to the 
fixed points C and B. In most cases, however, the displace- 
ment quantities are of interest only indirectly and the main 
quantities sought are the forces in the stringers and the shear 
stresses in the sheet. These quantities can be obtained in a 
simple manner by multiplying pot.ential differences by the 
appropriate conductances and by the conversion factor. 

For instance when the force in stringer segment j-8 is 
sought, the voltage drop between posts 1 and 8 must be 
measured and multiplied by the conductance p,, ant1 the 
conversion factor. This is a consequence of equations (7) 
and (10). Similarly when the shear stress in panel 1689 is 
required, the voltage drops in conductors 1-6 and 8-9 have 
to be measured. From figure 4 the average displacement of 
stringer segment 6-9 is (v,+Q)/~ and the average clisplace- 
ment of stringer segment 1-8 is (nl +v,)/2. The difference of 
thrse two average displacements multiplied by Gtb/u is the 
shear force transmitted from the panel to stringer segment 
6-9. Consequently the sum of the displacement differences 
~-2’~ and 2’9-2’8 multiplied by the influence coefficient I-6 
is the shear force sought. In other words the sum of the 
voltage drops from post 1 to post 6 and from post 8 to post 9 
multiplied by the conductance p,, and the conversion factor 
is the shear force in question. This shear force divided by 
the length b gives the average shear flow in panel 1689 and 
this shear flow divided by the thickness of the sheet is the 
average shear stress. 

With the cooperation of the Department of Electrical 
Engineering a network was constructed at the Polytechnic 
Institute of Brooklyn which was the analogue of the rein- 
forced panel investigated earlier at PIBAL both cxperimcnt- 
ally and by relaxation methods. The results of these 
investigations arr described in reference 3. The constant 
:urrents were introduced by means of constant-current 
generators. In the electrical system the unit of the potential 
vas chosen as 1 volt and that of the current as 100 milli- 
tmperes. Then the unit of the conductance had to be a 
nillimho and that of the resistance, a kilohm. In the 
nechanical system the unit displacement was 10e4 inch and. 
)he unit force, 1 pound. Consequently in this problem the 
Toltage differences had to be multiplied by the conversion 
‘actor 10e4 inch per volt in order to obtain displacements. 
l’he factor converting currents into forces was 10 pounds per 
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ampere. The results of the measurements were in excellent 
agreement with the results quoted in reference 3. 

Similar experiments were carried out by Newton and Engle 
at the Curtiss-Wright Corporation, Airplane Division, in 
St. Louis and are described in two reports listed as references 
11 and 12. Newton’s approach to the problem is fundamen- 
tally the same as the argument given herein. However, his 
electric network is slightly simpler since it does not contain 
the conductors arranged diagonally in the system shown in 
figure 5. The network of figure 5 was chosen in this report 
in preference to Newton’s simpler network since by this 
presentation the identity of the conductances of the network 
and the influence coefficients used in the other part of this 
report could be established. 

It should be mentioned that in many cases it is possible 
to construct a dual type of network in which the currents 
correspond to the displacements of the joints of the rein- 
forced panel and the potential differences correspond to the 
forces in the stringers and in the sheet covering of the 
panels. In this type of network the external loads can be 
introcluccd more easily as impressed potential differences. 
Howrver, the network described herein is more advantageous 
sincr it can always be construct4 directly from the geometry 
of thr reinforced pnnrl. 

The usefulness of the analogur with the direct-current 
network breaks down when the influence coefficient in equa- 
tion (7) becomes negative. In such a case the conductance 
and consequently the resistance of the corresponding branch 
of the network should be negative; this is obviously impos- 
sible. However, the situation can be usually remedied in 
the case of one-dimensional shear lag problems. The funda- 
mental assumptions of the problem are not changed if a 
numbrr of additional horizontal bracing rlements are intro- 
duced in the panrl since all of them are assumed to be 
infinitely rigid. If, however, the panel length b is reduced 
to one-half its original value, then the negativr term in the 
influence coefficient appraring in equation (7) is halved and 
the positive term is doubled. In most cases this will sufficr 
to changr the sign of the influcncr coefficient. When such 
is not the casr distance b can be reduced in any other suita- 
ble ratio. 

TVegative influence coefficients can be realized if the anal- 
ogous network is fed by an alternating current. The 
quantity corresponding in an alternating-current circuit to 
the resistance of the direct-current circuit is the impedance. 
In the impedance the inductance retards the phase of the 
current and the capacitance advances it so that the two 
have opposite effects. If one is designated as positive, the 
other is negative. However, no inductance is entirely free 
of resistance and for this reason the accuracy of a compli- 
cated alternating-current network may not be sufficient for 
the solution of some of the problems encountered in practice. 

The use of the electric analogue for solution of shear lag 
problems is recommencled when several similar panels with 
many loading conditions are t,o be analyzed. For such a 
case the construction of the analogous network, the varia- 
tion of the loading by varying the impressed current,s, and 
the determination of the potentials at the binding posts 
would be simpler than any analytic method of solution. 

FUSELAGE RINGS 

INTRODUCTION 

In reference 5 numerical procedures for the determination 
of the bending-moment distribution in fuselage rings are 
developed and demonstrated on several simple and internally 
braced fuselage rings. The number of redundant internal 
bracing elements increases little the work involved in estab- 
lishing the operations table for the ring and affects not at all 
the amount of numerical work in the solution of the opera- 
tions table. This nonsensitivity to the number of redund- 
antes constitutes the advantage of this method in the analy- 
sis of fuselage rings. 

The methods suggested for the solution of the system of 
equations represented by the operations table and the 
external forces are three: Relaxation, matrix-calculus, and 
growing-unit. The latter two may be considered as direct 
mathematical methods and as in reinforced-panel problems 
require only computing personnel. For the analysis of 
isolated fuselage rings of complex shape the use of these 
direct methods is recommended since an accurate solution 
is assured in a reasonable length of time, whereas the relaxa- 
tion method may not lead to sufficiently accurate results 
even after considcrablr effort has been expended. However, 
for simply shaped rings and for problems of stress distribu- 
tion in shert, stringer, and ring combinations, application of 
the relaxation method to fusclagc rings is advantageous. 
For this reason the relaxation method for fuselage-ring 
problems is presented and new, more rapidly convergent 
procedures arc devrloped. 

It has not been found possiblr to make concrctc rrcom- 
mendations for relaxat(ion procedures which are rapidly con- 
vergent for all types of ring and loading. However, satis- 
factory procedures for several distinct types of ring and 
loading arc demonstrated and explained in some detail. It 
is felt that consideration of these examplrs will suggest, to the 
analyst mrans of solving more rapidly other ring and cylindrr 
problems which are not efficiently attackrd by direct mathe- 
matical means. Thr procedures, which involve essentially 
appropriate combined operations, are demonstrated on two 
rings solved in refrrencr 5 by the usual relaxation methods 
and on a new internally braced ring. Application of the 
growing-unit and matrix-calculus methods to the latter 
problem is made to demonstrate these methods and to 
verify the results of the relaxation procedure. 

TORSION OF A CIRCULAR RING 

In reference 5 the bending-moment distribution for a 
simple circular ring with antisymmetric loading consisting 
of concentrated forces and distributed and constant shear 
flow is determined by application of numerical methods. 
The dimensions and loading for this ring are shown in figure 
6 and the operations table is given as table 7. Relaxation 
methods are applied to the solution of this ring problem in 
reference 5. By a process of increasing all the residuals in 
such a proportion that one key operation would liquidate 
them all to within the desired degree of accuracy, the resid- 
uals were reduced to within 2 percent of the maximum 
applied load in 12 operations. 
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FIWJRF G -Circular ring with nntisymmctric loads. 

In the present report combined operations which increase 
the rate of convergence are clcmonst.rated. Tangential and 
angular displacements of A and C balance these points in 
four operations and place all remaining residuals at B. 
Since no tangential forces exist at A and C, the force residual 
a,t B must. be vertical and the moment residual, equal to the 
couple of the vertical forces. Suppose the residual moment 
at. B is liquidated by a rotation of that joint while Ihe balance 
of A and C is preserved by suitable displacements of A and C. 
Then from equilibrium considerations the residual forces at 
B must also be liquidated. Thus in five operations balance 
will be obtained. This procedure is used and proves to be 
satisfactory. 

In order to balance the residuals at A two combined 
operations are developed. The first combines a unit angular 
displacement ?oA with a tangential displacement ua such that 
no tangential force at A results when the two individual 
operations are simultaneously applied. The forces ancl 
moments introduced by the individual operations as n-cl1 as 
by the combination arc given in the following table: 

7-C 

0 

0 

0 

The sccontl operation combines a unit tangential displace- 
ment uA with an angular rotation WA such that at A no 
moment arises from the combinctl operation. The forces 
and moments introduced by the individual operations as 
well as by the combined operation are given in the following 
table: 

Oprration 

\ \  IDA i T . ,  ) AT‘s Rn 1 Tu ( A-c Tc  

__- 

ua=10.3 in. _._. -49.Oi9 -52.296 G4.675 

1 

-22.441 51.51G 0 0 _____-- _______ _-- u‘il= -0.1i407X10-3 

radian-... __... .-.. 

Thus by using the necessary amounts of the combined 
operations A and B joint A is balanced in two operations. 
Two similar operations are found for joint C and are given 
as follows without explanation: 

\\ Forces and 

\ 
moments 

Operation 

\ \  NA TA NE R s  Te N C  Tc  

\ _--___ 

wc=lO-sradian.... 0 0 56.512 

uc=-4.854oxlo-~ in. 0 0 -32.192 -2.5435 -0.33250 7. 58138 1.563 
-__ 

~- -__ Z+Operation C=l... 0 0 24.320 6.2985 6.2995 -150.31 0 

WC=-0.0098987X10” 
radian-..... . . . . . . . 

In order to balance the residuals at B without disturbing the 
balance at A and C obtained by use of operations A to D, 
combined operations involving tangential and angular 
displacements of A and C and a unit rotation of B are devel- 
oped. If joint A is to remain in balance when a rotation 
of B is undertaken, joint A must be rotated and displaced 
in such a manner that the tangential force and the moment 
introduced at A by this rotation of B are equilibrated. Since 
the angular displacement introduces tangential forces at 
A and the tangential displacement introduces moments, two 
simultaneous equations must be solved for the unknown 
tangential and angular displacements. The equa.tions for 
A are: 

The solution to these equations is wA= -0.38434X 10m3 
radian and ~.~=1.5974XlO-~ inch. A unit rotation of B 
and tangential and angular displacements of C are combined 
in equations (19) so that the tangential force and moment 
introduced at C by the combined operations arc zero. 

-157.899w~-l.563uc+56.5117X10-3=0 
-l.563wc-0.322u~+6.632X10-3=0 (19) 

The solution to these equations is w,=O.l618OX 10m3 radian 
and UC= 19.811 X lop3 inch. 

If the forces and moments introduced by the three sets of 
displacements (unit rotation of B, the tangential ancl angular 
displacements of A, and the tangential and angular displace- 
ments of C) are combined, a combined operation is obtained 
such that only forces and moments at B and radial forces 
at A and C are introduced. These latter forces are of no 
interest in the relaxation procedure since they are equi- 
librated automatically by the other half of the ring. The 
combined operation from these three sets of displacements is 
given in the following table: 
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‘1 Forces and 

-\,’ N , ,  TA Nn RB Ta N C  T c  

oprration 
- -----.-~-~-- ----- __- 

UJS=IW radimmee--- ____________ -29.966 64.675 -439.849 31.443 -50.642 56.5117 6.632 
____--~~- ___--- -____ 

WA=-0.3843X10-3 radian .___._ -. 10x. 37 18.863 11.517 1.81Sl -24.857 0 0 
~___ -___-__-- -____ --- --___ -- 

zL~=1,5974xlO-3 in __._.._____ -_. -78.399 -a3.538 103.31 -35.847 32.292 0 0 
---_____ -_---~-~__---- ---- --__ 

wc=0.lfi180X10-~ radian .._____.. 0 0 9.1436 1.4306 1.0730 -25.548 -0.25289 
-- ____-__------------ 

uc=19.811XlO-3 in-. __.______ -... 0 0 131.39 10.381 I. 3570 -30.964 -6.3791 
-~____ --. 

Z-tOperntion E=l.-.- ._..._._.._ 0 0 -184.49 9.2267 9.2230 0 0 
I 

The relaxation table using these five combined operations, 
A to E, is given as table 8. The balancing process was 
carried out on a slide rule and after five operations all the 
residuals were reduced to negligible quantities. From the 
magnitudes of these group operations the total individual 
displacements of A, B, and C can be found and the unknown 
radial forces at A and C calculated. 

The procedure just described involves csscntially thr 
development of group operations so that full advantage of 
the symmetry properties of the ring may be realized. This 
method is applicable to other rings. The internally braced 
circular ring subjected to antisymmctric loads and analyzed 
in rcfercncc 5 can bc treated in the same way as this simplo 
ring. If these rings had been symmetrically loaded, the 
force residuals at B, after A and C had been balanced by 
simple mdial displacements, would have a horizontal 
resultant. By combining radial and tangential displacc- 
ments of A and C such that the resultant force introduced at 
B is horizontal and such that A and C remain in balance, the 
horizontal resultant at B could be liquidated by application 
of such a combined operation. The. moment residual at B 
is not nrccssarily eliminated when the force residual at B is 
balanced. Joint B must bc rotattd while A and C are tlis- 
placed ratlia.lly so that the moment at B is liquitlatcd and 
joints A and C are kept in balance. If the process of liqui- 
dating first the residual force and then the moment at B, 
prcscrving in each operation the balance at A and C, is not 
rapidly convergent, two equations for the equilibrium of B 
can be established and solved for the required amounts of the 
combined operations. 

Thus the foregoing procedures for both the symmetrical 
and antisymmetrical loading can be applied to any ring 
singly symmetrical with only one joint between the center 
line of symmetry joints. It may, therefore, be advantageous 
in some ring problems to combine several bars, as in the 
method of the growing unit, such that only one joint bc- 
tween the boundary joints has independent degrees of 
freedom. This will permit use of the foregoing procedure. 

Sufficient accuracy for most engineering purposes can bc 
obtained in the computations of this procedure by the use of 
a slide rule throughout. Although the combined operations 
shown herein were obtained by the USC of a computing 
machine carrying five significant figures, the procedure was 

first demonstrated with the use of a slide rule for all calcula- 
tions. The results of the two sets of calculations are in 
good agreement, thus indicating the sufficiency of slide-rule 
accuracy. 

EGG-SHAPED RING 

Figure 7 shows the dimensions of, and loading on, a ring 
which is analyzed in refercncc 5. The operations table for 
this ring is given as table 9. In this ring there are two 
points B and C bctwccn the center line of symmetry points 
A and D. By making the degrees of freedom of either 
point B or C tlcpcntlcnt on the other and on the adjacent 
center lint of the symmetry point, one point. with independent 
degrees of freedom is cstablishcd bctwccn A and D and the 
method discussed previously can bc used. 

500 lb 
t 

500 /b 

FIGURE i.-Egg-shilped ring with symmetric loads. 
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However, in order to demonstrate the simplicity and 
effectiveness of group operations, another approach is used. 
The center lines of symmetry points A and D are balanced by 
simple radial displacements of A and B. The midpoint of 
bar BC is assumed restrained tangentially so that only equal 
and opposite tangential displacements of B and C are under- 
taken. Because of the large extensional stiffness of bar BC 
as compared with the bending rigidity of the circular seg- 
ments and because the ring is almost symmetrical about a 
horizontal axis, such displacements of B and C liquidate ap- 
proximately equal and opposite tangential residual forces at 
B and C, such as those which will be obtained at these points 
when the residuals associated with the other degrees of free- 
dom are small. 

If the balance at A and D is preserved by appropriate com- 
binations of the radial displacements of A and D with the 
required displacements of B and C and if the tangential resid- 
uals at B and C are not considered until the foregoing opera- 
tion will liquidate them both, main attention is focused on 
the radial force and moment residuals at B and C. In order 
to balance these, no specific method of convergence is used 
but the state of the residuals after each step is considered 
before the next operation is selected. In this problem of 
egg-shaped rings and many other rings and in the complete 
cylinder problems this approach, utilizing physical proper- 
ties of the system and eliminating or reducing extraneous 
forces and moments at each step in the relaxation process, 
may be the most satisfactory method of solution. 

Table 10 is the relaxation table for the ring in question. 
The first two operations involve only radial displacements 
which balance the 500-pound forces at A and D. The largest 
residual then is the radial force of 451 pounds at C. If point 
C is displaced radially so as to balance this residual, a large 
moment and a large radial force are introduced at B. In 
order to reduce these extraneous forces and moments and 
to Beep joints A and D balanced, radial displacements of A, 
B, and D and a rotation of B are combined as shown by the 
following operations: 

-3.34833v,+8.92216w,-2.69614c,=O 

8.92216z~,-327.866w,+11.4697v,+8.10267X10-4=0 

-2.69614~~~+11.4697w,-4.00991v~+0.66158X10-4=0 (20) 

-12.24ooc,-1.11900x10-4=0 

The solution of this system of equations is: VA=-0.26384X 
10m4 inch, wB=0.03279X10-4 radian, v~=O.43618XlO-~ inch, 
and vD= -0.9024 X 10m4 inch. 
The forces and moments introduced by each of the individual 
operations and by the combination are given in the following 
table: 

Forces and 
moments 

\ REi NB RB TB 

‘\ 

Operation 
\ __-- -- ________- 

uc=lO-‘in.. .._._.....~~...._... 0 8.10267 0.66158 0 
-~_ -___ 

no=-0.26384X10-Jin .~ . . .._.. ~. 0.88343 -23540 0.71136 -1.0468 
__-~ ----- 

ws=O.O3!279XlO-4 radian. ..~.. 0.29258 -10.751 0.37612 -0.42963 
____ 

vs=O.43618Xlti in . . . . . ~... -1.1760 5.0028 -1.7491 1.4984 
- ___-__ ~ --~ 

on=-0,90242X10-~ in . . . .._.... 0 0 0 0 
= __~-___ ~- --__ ___-__ 

Z-tOperation F=l~ ._............ 0 0 0 0.0219 

\ 

Forces and 
moments 

\\ 
N C  XC T C  R D  

\  

Operation \ 
- \ ---- -_____ 

oc=lOWin . . . . . . . . . . . . . . . . .._.... -2.95622 -1.902c.5 -0.88929 -1.1190 
_______ 

oA=-0.26384X10-~ in .~ . .._. ~.. 0 0 0 0 
-____________ 

we=O.O3279XlOV radian . .._. ~.. -2.0082 0.26570 0 0 

v~=O,43618XlW in . . . . . .._.. -. -3.5342 0.28857 0 0 
______ -~ 

nD=-0,90242XlOC- in . . . . . .._.... 6.6350 1.00981 0.93626 1.1190 
-___-.______ - 

Z+Operation F=l.........._.. -_ -1.8636 -0.33798 0.04697 0 

The use of combined operation F is desirable in balancing the 
radial residual force at C, since it a.lso reduces the moment 
residual at C and adjusts the tangential residuals at B and C 
in the desired manner. 

The residual considered after use of operation F is RB= 
402 pounds. In order to balance it by a displacement 
yB while the balance at A is preserved, a VA-displacement 
must be undertaken as well. If v~=~O-~ inch, then 

2.69614 
vA=-3.34833X 104= -0.80522X lop4 inch. The forces and 

moments introduced by these individual operations as 
well as by the combinations are given in the following table: 

Forces and 

\ 
moments 

\ 

‘1 
RA A’.4 R R  TB N C  R C  Tc  R D  

Oprration \ 
\ _---~--- __- 

vs=lO-4 in ............... 

0.4 =-0.80522X10- in ....... 

z+Operation G=l..-.-. ..... 

Consider the rffect of eliminating the RB-residual by use of Rc-residual of about 30 percent of the previous R,-residual 
operation G. The moment. residual NR would also be re- of 451 pounds would be introduced, and a large NC-residual 
duced by roughly 1000 inch-pounds, the T,-residual would would be introduced. The last two effects are undesirable. 
be brought in closer agreement with the T,-residual, an However, by use of operation F again, the Rc-residual can be 
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balanced without introducing a new R,-residual. The large placement of D are combined so that a moment at C can be 
NC-residual is not so easily balanced unless a new combina- 
tion involving joints A, 6, and D is evolved. 

eliminated and so that the balance of D is preserved by use 

Suppose, therefore, that a rotation of C and a radial dis- 
of the combination. The individual operations and the 
combinations are given in the following table: 

Forces and 
moments 

““--------- 

RA NE RB TR NC RC TC RD 

\-~-----------.---~- _____- -- 
wc=lO-4 radian .._..________...... 0 -61.242 -8.10267 0 -288.367 -2.95622 -5.24667 -7.3524 

--- ---- 
uD= -5.9294X10-4 in.. ______._ -.. 0 0 0 0 43.595 6.63500 6.1517 7.3524 

- -v mm-- ~~ 
Z+Opcration H  = I.._.._________. 0 ---fil. -8.1027 0 -244.772 3.6788 -o.90.508 0 

If operations G  and H are combined so that the moment at C int,roduced by the combination is zero, the resulting 
forces and moments are given in the following table: 

‘\ Forcw and 

‘\ 

mOmcntS 
RA NL7 RB TB NC R C  T C  Rll 

Oprration ‘\ 
\ ~_~-__--~ - --. 

1X(G). . . . . . . . . . . . . . 0 4.2854 -1.83X91 0.2403 -8.10267 0.66158 0 0 
----_ ______ 

-0,033103X(H) 0 2.0273 0.26822 0 8.10267 -0.12178 -0.02996 0 
BP--- _____ __--___- ~~--~-_ ~___- 

z+Opwation I=1 _............ 0 6.3127 -1.5707 0.2403 0 0.53980 -0.02996 0 

Use of operation I results in liquidation of the R,-residual, 
in reduction in the NB-residual, in adjustment of the TB- 
and T,-residuals toward the desired equality, and in intro- 
duction of an Rc-residual of 138 pounds. The latter can 
be balanced by the USC of operation F, which will preserve 
the balance of A and D and will not affect the NB- and 
R,-residuals. 

After t.his fifth operation the TB- and T,-residuals arc 
approximately equal and opposite as desired. Therefore, a 
group operation, involving equal and opposite tangential 
displacrments of B and C and sufficient radial displacements 
of A and D so that the latter remain balanced, is developed 
in the following table: 

Forcrs and 
momrnts 

Operation 

0~=1.185OXlO-‘in ._._ __._.. 

on=O.S3669XlO-4 in __..... -.- .__.. 

z+Operation J=l.___........ -.. 

‘------p”:’ Nc 7 Rc ’ Tc Rn 
Operation 

\ --___ 

uB=lO-a in .._..._................ / 0 I 0 1 26.2058 / 0 I 

UC=-IO-4 in . . . . . . . . . . . . . . . . . . . . I 5.246fi7 1 0.88929 1 27.0833 I 1.0375 I 

o~=l.l85OXlO-4 in . . . . . .._._.... -1 0 lo lo lo I 
o~=O.R3669XlO~ in ._......_...._. 

Z+Operation J=l____. -._-_- ____ 

Use of operation J liquidates the Te- and Tc-residuals and 
affects little the balance in the other degrees of freedom. 
The remaining residuals are considered negligibly small, the 
moment of 309 inch-pounds being approximately 3 percent 
of the maximum moment in the ring. As in the previous 
problem the individual displacements can be determined 
from the magnitudes of the group operations and thus the 
unknown moments and tangential forces at A and D cal- 
culated. 

Although the calculations of the group operations shown 
1 herein have been carried out on a computing machine with 

five significant figures maintained wherever possible, suffi- 
cient accuracy for engineering purposes can be obtained by 
the use of a slide rule- In developing this procedure a slide 
rule was used for all computations and the results agreed 
satisfactorily with those shown herein. 

OVAL-SHAPED RING WITH INTERNAL BRACING 

The ring shown in figure 8 is used as a third example of 
the new relaxation procedures. As a check on the results 
of this procedure the system of equations given by the 
operations table and external forces is also solved by the 
exact mathematical methods of matrix calculus and of the 
growing-unit method. In order that the charts and tables 
of reference 6 could be used in determining the influence 
coefficients, the following physical characteristics of the 
elements of the ring are assumed: 

Segments AB and EF : 
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P=45O 

EI=lP lb-k2 

L=18.85 in. 

Segments BC, CD, and DE : 

p=30° 

EI= lo6 lb-in.’ 

L= 18.85 in. 

Segment EG : 

p=o” 

(<‘I= 10’ lb-irl.2 

L= 10.97 in. 

T 
Frcrrc~ 8.-Oval-shaped ring with positive directions of forces and monwnts shown 

Because of t.hc symmetry about a line through AGF only 
one-half of thr ring need be considered. Joints A, G, and F 
arc then rftstraincd from rotating or displacing tangentially 
and cannot be subjecttd to radial forces. The assumed 
positive directions of the displacements and of the forces 

and moments at each joint are shown in figure 8. From 
the foregoing assumptions, the influence coefficients and the 
operations table given in table 11 are determined. 

The horizontal external forces of 1000 pounds at C and D 
are resolvecl into their tangential and radial components. 
Thus the external forces are: 

Rc=965.93 lb 
T,=-258.82 lb 1 

R,=-965.93 lb 1 (20 

T,=-258.82 lb) 

The matrix-calculus solution of the system of equations 
given by thcsc rslcrnal forces and by thr operations table 
is first obtained so that the equilibrium of the ring as given 
by this solution will provide a chccli on the whole setup. 
Joint G is considered fixed so that. a unique solution to this 
system of equations is obtained; thus there are 14 degrees 
of freedom to be considered. The 14 unknowns are found 
by the method of reference 9 to be: 

I'.~= -605.73 X 10e3 in. 

wB=40.825X10p3 radian 

r,=35.144X10m3 in. 

I(,=-300.06X 10v3 in. 

wc= - 11.445 X 1 Oe3 radian 

vc=664.55X lop3 in. 

uc= -72.252X low3 in. 

wr,= -22.975X 10e3 radian 

('I>- -94.783 ‘< 10-3 ir1. , 

u,=Wl.130,~10-3 iii. I t 

w,=6.2337XJO-" radian 

cE= -42.621 X 10e3 in. 

~~=32.513XlO-~ in. 

rp= -44.648X 10v3 in. 

(22) 

I’hrsc displacements give the following values of the 
unknown momcuts and tangScntia1 reactions at A, F, ant1 G 
:)n the bars rat.hcr than on the joints: 

,YA=-311S.S in.-lb 

T,=402.51 lb 

A’,= 105.43 in.-lb 

T,=--152.57 lb 

A’,=-371.06 in.-lb 

Rc=O.43 lb 

T,=584.98 Ib 

(23) 
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Figure 9 is the bending-moment diagram for the ring with 
these reactions appliecl. 

By examining the equilibrium of one-half the ring under 
these reacbions and the external forces, the accuracy of the 
operations table is established. Since RA and Rp are zero, 
the summation of forces in the vertical direction is simply: 

~F~=R~=0.43 lb (24) 

The summation of forces in the horizontal direction is: 

zF,= TA- Tr- T,=O.lO lb (25) 

The summation of moments about point G  is: 

.XMrs=Na+T., 24+&+24(0.70711)]+ 
[ 

N,+N,+T,(24)(1-0.70711)-1000(2X36X0.25882) 
=-3118.91+402.49(57.941)-371.06+105.43- 

lS2.56(7.0294)-18,635.04 
= 17.45 in.-lb (26) 

The equilibrium conditions for the half ring arc approsi- 
mately satisfied, the maximum percent error being a moment 
of less than 0.1 percent of the applied couple of 18,635 inch- 
pounds. It is considered that the accuracy of the operations 
table is cstablishecl by this equilibrium check. 

Approximately 20 man-hours by an unskilled computing- 
machine operator were required 1.0 solve this system of 14 
equations. It is estimated that a skilled operator familiar 
with the Crout method moulcl require about 10 man-hours. 

In applying the Gout method to t,his problem the co- 
cfficicuts of the linear equations arc assumctl to bc mathc- 
matically rsact aml, thcrcforc, as mnng flgurcs as c~oultl bc 
carried on the IO-hank computing machine arc usrtl through- 
out the computation. In this way an accurate solution is 
obtained and the additional computing work is not great. 
Afterward the values of the unknowns can bo rounded off to 
the physically correct number of significant figures. 

USC of the growing-unit method of solution on this ring is 
demonstrated as follows. This mcthocl is describecl in detail 
on pages 39 to 46 of reference 5. It is demonstrated on this 
new ring as an application of the procedure to a ring with 
many intermediate joints bctwecn the center lino of sym- 
mctry points. In applying the growing-unit method to this 
ring the units arc combined into bars of increasing length 
until displacements of all points are known such that the 
only unbalancecl forces remaining act in the radial direction 
at A and F when unit radial displacements are undertaken at 
A and F. Then thcsc forces at A and F can be eliminated 
by appropriate radia.1 displaccmcnts of A and F and the final 
distortccl shape determined. 

The first units to bc combined arc AB ancl BC. In order 
to effect this combination, the displacements of B required 
to maintain the balance of B during a unit radial displace- 
ment of A and unit radial, tangential, and rotational dis- 
placements of C must be determined. The displacements of 

B required to maintain the balance of B while point A is 
displaced radially 10e3 inch are given by the equations: 

NB= -454.34~&6.7238~,-- 
78.411u,+5.9020X10-3=0 

R,=6.7238w,-12.093v,+ 
0.55690uB-4.5778X 10-3=0 (27) 

TB= -78.411w,+O.5569Ov,- 
84.510~~+14.662XlO-~=O I 

The solution to these equations is: wB=-0.026434X10-3 
radian, ~~=-0.38424XlO-~ inch, and u,=0.19549X10-3 
inch. 

If the forces and moments at points A and C due to a 
displacement v~=IO-~ inch and due to the foregoing dis- 
placemcms w,, v,, and ug are summed, the following equa- 
tions arc obtained: 

X,1= -2.6618 lb 

NC= 10.699 in.-lb 

Rc= - 1.5871 lh 

Tc=3.2614 lb I (28) 

The displaccmcnts NR, Rn, and TB arc zero since that is the 
condition satisfied by equations (27). 

The clisplaccments of B required to maintain balance at B 
during unit rotational, radial, or tangential displacements 
of C are clctermined in a similar manner and arc collected in 
table 12. 

The forces and moments given in the last seven rows of 
this table constitute the influcncc coefficients for a ncm unit 
of the ring, namely, the segment ABC. This unit is not a 
bar, the centrr linca of which is an arc of a circle, but rather 
one composrd of two arcs of circles. This combining of 
units, cstcndcd until the entire ring is one segment, is the 
main principle of the growing-unit method. 

Each column of table 12 represents a group displacement 
mado up of individual clisplacements of points A, B, and C. 
Let thcsc group displacements bc identified by the Roman 
numeral given at the head of each column. For example, 
group II is made up of the displacements wc=10e3 radian, 
wg= -0.21631 X 10e3 raclian, vB= -0.23971 X 10m3 inch, 
ue=0.74197X10-3 inch, and va=vc=uc=O. The moment 
at C, for instance, caused by the application of xII units of 
the group displacement II is then 

N,= -389.56xII (29) 

With a similar notation for all other forces and group dis- 
placements, equations (30) may bc set up representing the 
requirements for equilibrium of joint C under the external 
forces acting at that point, balance of B being maintained. 

N,= -359.56x11-10.093x111-53.771x1y=0 

&=-llb.093xII-6.7529xI11-10.615x1v+965.93=0 (30) 

Te=-53.771xn-10.615xnr--54.199xm--258.82=0 
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The solution to this system is zIr=1.0476, x,,,=217.61, and 
x1,=-48.436, and the following forces and moments are 
introduced at A and D: 

RA= -557.43 lb 

No= -2,666.6 in.-lb 

RD=1S4.66 lb 

T,=626.46 lb 

(31) 

The forces and moments at D are added t,o the rstcrnal forces 
applied to the ring at D and are balanced after the unit 
problem for the segment at ABCD is established. The 
RA- force is not balanced until the complete ring is one seg- 
ment and until the R,- and RF- residuals can bc balanced 
together. 

‘The next unit to be considered is the combination of the 
ABC segment with bar CD into the segment ABCD. The 
problem is to find the forces and moments at A, D, and E 
due (1) to a unit radial displacement of A with joint D fixed 
and (2) to unit radial, tangential, and rotational displace- 
ments of D with A and E fixed. Joints B and C are free to 
displace so as to maintain the balance at B and C in each 
of these four cases. By determining t.he magnitudes of 
XII, xm, and xIy required to balance C in each of these four 
cases, the required displacements of both B and C are im- 
plicity determined and the unit problem for segment ABCD 
is solved, 

The magnitudes of the xII-, xIII-, and x1,-operations re- 
quired to balance joint C when A is displaced radially lop3 
inch and B permitted to displace so as to remain in balance 
are given by the following equations: 

Nc=-3S9.56x~~-10.093x1~1-53.771x~~+10.699=0 

Rc=-10.093x11-6.7529xm-10.615x,,-l.SS71=0 

Tc=-53.771x11-10.615sIII-54.199.xIv+3.2615=0 t 

(32) 

The forces and momrnts at C to be balanced are given in 
group I in table 12. The solution to these equations is 
x1r=0.021497, xm= -0.53843, and x1,=0.14430. Use of 
these multiples of operations II, III, and IV and of a unit 
amount of group I results in the following forcfs and moments 
at A and D: 

R,= -0.94505 lb 
7 

N,=6.7928 in.-lb I 
RD= -0.74924 lb 

I 

l (33) 

To=O.77749 lb J 
The forces and moments given by groups V, VI, VII, and 

VIII in table 13 are the influence coefficients for segment 
ABCD. For example, the forces and moments introduced 
at A, D, and E due to a unit radial displacement of D with 
A and E fixed and with B and C in balance are given by VII. 
With these sets of coefficients it is possible to balance joint 
D while the balance of B and C is prescrvcd. The forc:s 

and moments to be balanced at D are (1) the external forces 
on the ring at D and (2) the forces and moments which are 
introduced at D by the balancing of C and which are given 
by equations (31). The residuals to be balanced at D are 
thus: 

ND= -2666.6 in.-lb 

RD=-965.93+184.66=-781.27 lb 

I T,=-258.82+626.46=367.64 lb 

(34) 

The equations which condition the balancing of joint D, 
from consideration of groups VI, VII, and VIII, are seen 
to be: 

ND= -346.SSxvI-16.697s~~11-43.745xv~~~-2666.6=0 

R~=-16.697xv~-5.6500xv~~-12.458xvm-781.27=0 

T~=-43.745rv1-12.45Sxv11-50.S17xv~~1+367.64=0 t 

(35) 

The solution to these equations is XVI= -3.3100, 
xvrr=-328.09, and zvm=90.51S, which give the following 
forces and moments: 

R.t=293.71 lb 

N,=4889.4 in.-lb 

RE= -522.69 lb 

T,= - 149.69 lb I (36) 

As in the balancing of C, a tangential force and moment are 
introduced at A by this balancing of D, but because of 
symmetry the equilibrium of A is not disturbed by these. 
The R,-forces will be balanced later and the residuals at E 
will be balanced when the influence cocfficicnts for segment 
ABCD E have been determined. 

In order to find the influence coefficients for bar ABCDE, 
the forces and moments at A and E due to a radial displace- 
ment of A with E fixed and at A, E, and F due to unit radial, 
t.angential, and rotational displacements of E with A and F 
fixed must be determined. By determining the magnitudes 
of groups VI, VII, and VIII required to balance D in each 
of these four cases, the required displacements of B, C, and 
D and the required forces and moments are determined. 

The magnitudes of the groups VI, VII, and VIII required 
to balance D when joint A is moved radially 1O-3 inch are 
given by the following equations: 

RD= - 16.697xv1--5.65OOxvrr-- 12.458xv~~~-0.74924=0 (37) 

TD=-43.745xv1-12.45SxvII-50.S17xvm+0.77749=0 I 

The forces and moments at D to be balanced by groups VI, 
VII, and VIII are given by V in table 13 and are the constant 
terms in equation (37). The solution of these equations is 
r ,,,=0.028042, XVII=- 0.42660, and xvIIr=0.095744. The 
summation of forces and moments due to a unit magnitude 
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of group V and the foregoing multiples of groups VI, VII, 
and VIII are: 

RA= -0.36050 lb 

N,=4.1055 in.-lb 

RE= -0.31703 lb 

T,=O.19226 lb I 

(38) 

In a similar manner the complete set of influence coeffi- 
cients for segment ABCDE is determined and is given in 
table 14. For example, the forces and moments in group XI 
are the forces and moments introduced at A, E, F, and G by 
a unit radial displacement of E with A, F, and G fixed and 
with points B, C, and D free to displace so as to remain in 
equilibrium. With these influence coefficients joint E can 
be balanced while the balance of B, C, and D is prescrvcd. 

The forces and moments to be balanced at joint E are 
those introduced by the balancing of joint D with groups VI, 
VII, and VIII and are given by equation (36). 

The equations in xx, xsr, and xX11 balancing joint E under 
these loads arc: 

iVE=-533.92xX--338.099xX1-29.579xXII+4SS9.4=0 

Rs= -38.099xX-49.295xX1-53.432xXII-522.69=0 

I 

(39) 

TE= -29.579x,-53.432x,,-76.322x:,,,-149.69=0 

The solution to thcsr equations is x,=1 1.184, T,,=-51.518, 
and xxII=29.771 and the forces at A, F, and G introduced by 
this balancing of E arc: 

X,=67.974 lb 

R,= -266.68 lb 
i R2,=70.668 lb J 

(40) 

The tangential forces and the moments introduced at A, F, 
and G are not considered in this balancing of the half ring, 
since these arc equilibrated by the forces and moments from 
the other half of the ring. 

The final combination of units will be the combination of 
bar EF with the unit ABCDE. When this union is effected, 
the influence coefficients for the half ring as a unit will have 
been determined and the radial forces at A and F can be 
balanced simultaneously. The radial forces at joints A and 
F due to a unit radial displacement of A with F fixed and to a 
unit radial displacement of F with A fixed must be deter- 
mined. In both cases joints B, C, D, and E are displaced so 
as to remain balanced. 

The equations giving the magnitudes of groups X, XI, and 
XII required to balance joints B, C, D, and E when joint A 
is displaced radially as in group IX are: 

NE= -533.92xX-38.099x,,-29.5792,,,f4.1055=0 

RE= -38.099x~--49.295xx~-53.432x~~~--0.31703=0 

I 

(41) 
TE=-29.579xx-53.432xx:xI-76.322xxII+0.19226=0 

The solution to these equations is xX=0.0094398, xX1-. 
-0.051804, and xx11=0.03512S and the forces introduced by 
a unit magnitude of IX and by these multiples of groups 
X, XI, and XII are: 

R,= -0.29857 lb 

RF= -0.33361 lb 

Rc=0.035176 lb 1 

(42) 

The equations giving the magnitudes of groups X, XI, and 
XII required to balance joints B, C, D, and E when joint 
F is displaced radially 10m3 inch are: 

R,= -38.099xx-49.295xx~-53.432xx~I-4.577S=0 (43) 

TE= -29.579xX-53.432xXI-76.322xx~I- 14.662=0 t 

The solution to these equations is xx=-0.017182, xX1= 
0.50354, and x,,~=-0.53797 and the forces introduced at 
A, F, and G by a radial displacement of F of 10m3 inch and 
by the foregoing multiplrs of groups X, XI, and XII are: 

R,= -0.33361 lb 

R,= - 1.4470 lb (44) 

R,=1.1156 lb I 

The forces given by equations (42) and (44) represent the 
influence coefficients for the rntirc half ring and are labeled 
groups XIII and XIV, respectively. These forces permit 
calculation of the multiples of groups XIII and XIV rcquircd 
to balance the radial forces at A and F. These forces are the 
total forces remaining from the balancing of C, D, and E; 
R, is given by thr sum of the R,-forces of equations (31), 
(36), and (40) and is: 

R,=-557.43+293.71+67.974=-195.75 lb 

The RF-force is the force introduced by the balancing of 
E alone and is given by equation (40). It is: 

RF= -266.68 lb 

The equations giving the magnitudes of groups XIII and 
XIV required to balance joints A and F under those loads are: 

RA= -0.29S57xx111-0.33361x~1v-195.75=0 

R,= --0.33361~~~~~- 1.4470xxrIv-266.68=0 I 
(45) 

The solution to these equations is xxIII=-605.73 and 
xxiv=-44.646. The radial force at G  introduced by this 
balancing is -71.114 pounds, but the Rrforce given bp 
equation (40) in the balancing of E is 70.668 pounds. The 
difference between the two, -0.446 pound, is considered 
negligibly sma.11 compared to the applied loads of 1000 
pounds. 

With the balancing of joints A and F and the substantia- 
tion of the balance at G, the entire half ring is balanced. 
The total deflections in each degree of freedom can now be 
calculated and used to determine the unknown bending 
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moments and tangential forces at A, F, and G. In order 
to calculate these deflections the balancing equations (30), 
(35), (39), and (45) give the magnitudes of the group opera- 
tions involved while the equations determining the group 
influence coefficients give the individual operations involved 
in each group. 

Table 15 gives the magnitude of all group displacements 
from I to XIV implied in a unit application of any one group. 
For example, row X in this table indicates that a unit 
magnitude of group X (that is, xX=1) is equivalent to the 
sum of the effects of Xv111=2.1SS5, XVII=-4.6760, 
Xv,=-0.16186, and wE=10P3 radian, or the sum of the 
effects of XIv=2.9219, Xm=1.7552, XII=-0.19736, wE= 
10P3 radian, w,=-0.16186 X 10m3 radian, v,=-4.6760 X 
10m3 inch, and u,=2.1885 X 10M3 inch. During the solu- 
tion of the problem the magnitude of group X which was 
explicitly used was 11.184, as given in the last column of 
table 15. 

From table 15 the total magnitudes of each group opcra- 
tion may bc found. For example, the total magnitude of 
group VI is: 

xv,=(1)(-3.3100)+(0.02S042)(O)+(-O.161S6)(1l.1S4)+ 

(0.037474)(-51.51S)+(-0.0022427)(29.771)+ 

(0.024494)(-605.73)+(0.022857)(-44.646) 

=-22.075 (46) 

The total displacement wD is: 

wo= (zvI) x 10-3= -22.975x 10e3 radian (46a) 

Similarly t,he displaccmcnts of all points except point B 
may bc calculated from table 15 and are given iu the last 
row of that table. 

Point B n-as displacctl clurin g lhc upplicatioli of groups I, 
II, III, and IV, and thcrcforc the magnitude of it,s dis- 
placement must bc calculated as indicated in the following 
cxamplc: 

wB=(---0.026434X10-3)(-605.73)+ 

(-0.21631X10-“)(-11.444)+ 

(O.O35554X1O-3)(664.55)+ (47) 

(O.O17S47X1O-3)(-72.2S6) 

=4O.S35XlO-3 inch 

whcrc the first number in each product is the magnitudr of 
wB involved in each unit application of groups I, II, III, 
and IV, respectively. 

The total displaccmcnts used arc a.ssen~blcd in equations 
(47a). 

v,=-605.73X 10e3 in. 
~~~40.825 X lop3 radian 

~~=35.144XlO-~ in. 

u,=-300.06X lop3 in. 
wc= - 11.444X 10v3 radian 

vc=664.55X 10e3 in. 
~~=-72.286XlO-~ in. 

wo= -22.975 X 10P3 radian 

~~=-94.731XlO-~ in. 

uD=90.127X10-3 in. 
~~~6.2331 X 10e3 radian 

Up=--42.620X lop3 in. 

u,=32.511 X10P3 in. 

~~=--44.646XlO-~ in. 

c (47a) 

These total displaccmcnts constitute the unknowns of the 
system of equations given by the operations table and the 
external forces; comparison between this growing-unit and 
the matrix-calculus solutions given by equations (47a) and 
(22), rcspcctivcly, indicates good agreement for the dis- 
placements. In fact, the forces and moments given by the 
two methods differ by less than 1 percent and therefore arc 
given only for the matrix method (equation (23)). 

Several general remarks arc made about the growing-unit 
method: 

(a) In determining the influence coefficients and in balanc- 
ing the external forces and moments, sets of equations with 
the same left-hand sides but with different constant terms 
are used scvcral times. This simplifies solution of the cqua- 
lions and rcduccs the computational work considcrsbly. 

(1)) In ortlcr to obt,airi sufficirnt nccurac.y of solution for 
rings Tvitli many join@ cnlculatin, ~7 machines must bc used; 
five significant figures wcrc carried throughout the calcula- 
tions. Howcvcr, on the simpler rings such as the circular 
ring and the egg-shaped ring discussed previously, slide-rule 
accuracy for determining the displacements in a combined 
operation is probably sufficient for engineering purposes. 

(c) A check on the influence cocfficicnts for composite 
bars is obtained by applying Maxwell’s theorem of reciprocal 
deflections. This is a valuable device for assuring accuracy 
at each stage. 

In applying the. new rclssation proccdurcs to this ring, it 
would have been possible to USC the general method dr- 
scribed for the egg-shaped ring, that is, to consider the rcsi- 
duals after each operation and develop a satisfactory com- 
bined operation to rcducc as many residuals as possible. 
However, the number of dcgrces of freedom involved in this 
ring is large and, thcreforc, the number of residuals to bc 
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considered in testing the efficacy of a particular operation is 
large. 

The loading on the ring provides a clue to overcoming 
this difficulty. No external loads are applied at A, 6, E, 
F, and G; moreover, A, F, and G are points along the center 
line of symmetry. Therefore, if in balancing D and .E the 
balance at the other joints is preserved by suitable dis- 
placements, attention is fixed on the two joints D and E 
and the procedure described for the egg-shaped ring can be 
used effectively. It will be recognized that this procedure 
is essentially a combination of growing-unit and relaxation 
methods of solution. 

In executing the proposed method the bar ABC D, free 
only to displace radially at A and fixed at D, is considered 
first. The equations giving the displacement,s of A and B 
required to maint,ain balance of these points while joint C 
is rotated through 10e3 radian are: 

R~=-7.1310v~+5.9020w,-4.5778v,+ 
14.662u,=O 

N~=5.9020v.~-454.34W*+6.72381~~- 
78.41 lu,-38.489X IO-3=0 

I?,=-4.5778/~A+6.7238w,-12.093r~,+ 

1 

(48) 

0.55690u,-1.8576X10-3=0 
TB= 14.662vA-78.41 lw,+0.55690~~,- 

54.510uB+45.876X 10-3=0 

The solution to these equations is vA=4.0195X lo-” inch, 
~,=-0.32255XlO-~ radian, ~,=-1.7842XlO-~ inch, and 
uB= 1.5277X 10m3 inch. Thcsc tlisplaccn 
the unit rotation of C yield: 

NC= -346.56 in.-11) 
I~,= - 17.678 lb 
T,= -40.663 Ih 

ND= -38.489 in.-lb 
R,= 1.8576 lb 
7;=45.876 lb 

lents combined with 

(49) 

The moment and tangential force introduced at A are not 
considered until the balancing of the ring is complete. 

In a similar manner the forces and moments for unit radial 
and tangential displacements of C are determined, as shown 
in table 16. The forces and moments given by groups XV, 
XVI, and XVII constitute the influence coefficients for the 
displacements of C with A and D fixed and with joints A and 
B balanced. Use of these coefficients permits focusing of 
attention on C and D, the joints at which the external forces 
are applied when C is being balanced. 

The forces and moments introduced at C and D when D 
is displaced a unit amount in each degree of freedom and 
when E, F, and G are displaced so as to maintain the balance 
thereof are calculated and shown in table 17. 

Table 18 is an operations table consisting of unit magni- 

tudes of grqup operations XV to XX. Table 19 is the rclax- 
ation table for this ring which uses these group operations. 
The external forces applied at C and D are given in the first 
row of table 19. 

A discussion of each step in the relaxation process is given 
as follows: 

Step l.-Because of the antisymmetry of the loading and 
of the quasisymmetry of the ring about a horizontal axis 
operations xxvi= 1 and xxxrx= -1 are applied as a first ap- 
proximation to the deflected shape. The forces and moments 
introduced are as given in the following table: 

(XVI)=1 . ..___--.-.. -17.678 
-~---I;g&gZ~S~ (XIX)=-1 ._........ -1.857G 

Operation K is usecl to halancc the Rc-residual; the same 
operation rcduc~ the other forrc rcsitluals but introduces 
large NC- and ND-rcsitluals. 

Step 2.-111 order to retlucc these moment residuals an 
antisymmctrical combination of zuc and wD is made, as shown 
as group operation L : 

‘/---I--- (XV)=l. ..-_.. -346.56 -li.G78 .- - 

7’1, 

45.876 

-42.305 

3..571 

Howcvcr, USC of operation L by itself would rcintroducc large 
Ilc- and XD-residuals, and thrrcfore operations K and L 
are combined so that the Xc-rcsitlual will be smaller and the 
XD-residual eliminatctl, as shown in the following table : 

‘\ T 1 No / Rc / 7’c / ,,7,, 1 R,, 1 T,, 1 
Operation ‘, 

- - 

Operation L=l.. 

-3.3346XOporation 
K.................. 

Z+Operation M =l. 

-385.04 

65.145 __- 
-319.90 

I- 
-19.536 5.214 

I 
10.628 -2.844 

-8.908 2.370 

-430.95 

44.660 

-386.29 

13.393 3.571 

-13.393 -3.5846 

0 -0.0137 
I I I I I I I 

The new force residuals introduced by operation M are less 
than 30 percent of the original residuals and, therefore, the 
rate of convergence is felt to be adequate. 

Step 3.-The radial residuals at C and D have the same 
sign and, therefore, symmetrical displacements vc and 2)~ arc 
undertaken. It is seen that such a combination would 
introduce large tangential residuals at C and D. Therefore, 
a tangential displacement of C (D could have been chosen 
instcacl) such as to eliminate the Tc- and TD-forces is under- 
taken. The forces and moments introduced by the individ- 
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ual displacements and by the combination are denoted as 
operation N. 
I. 

Operation 
______---- 

(XVI)=1 __.._. _._.. -17.678 -5.4150 -12.928 -1.8576 -2.2277 13.781 
-- ~___ ___-- 

(XIX)=1 .__... __._. 1.8576 -2.2277 -13.781 11.535 -6.2441 12.706 
----__ --__-~ __- -___ 

-0.532OlX(XVII)... 21.632 6.8773 26.709 -24.406 7.3316 -26.587 __- ___-- ______ 
Z+Operation N =l... 5.811 -0.7653 0 -14.730 -1.1400 -0.100 

The use of operation N reduces substantially all the residuals 
except NC. 

Step 4.-In order to reduce NC and at the same time keep 
the Tc- and T,-residuals small, a combination of groups 
XV and XX is made. Group XX is included since a force 
increasing the residual Tn would be introduced by the use 
of XV alone. 

\\F 

operation ‘\ -~~ 
(XV)=l. .__..... ~... 

0.91279x(xX) ~...... 

Z+Operation O=l...mm 

NC R C  

-__ -~ 
-346.55 -17.678 

41.875 12.579 
--- -__ 
-304.67 -5.099 

Steps 5 and 6.-After operation 0 is used, the largest 
force residual is approximately 6 percent of the applied 
forces and the moment residuals are small. It was con- 
sidered desirable to reduce further the force residuals. 
Therefore, operation I was used again so as to reduce RD, 
the largest force residual, and then XVII was used so as to 
reduce the resulting Tc-residual. Aft,er t,his sixth step the 
largest residual of 4 percent. of the external force is con- 
sidered small enough. 

A check table using the total displacements is used as a 
check on the accumcy of the combined operations and on 
the relaxation table. The total individual displacements are 
calculated as discrrsscd in the previous two examples and arc 
as follows: 

v,=-596.18X10-3 in. 

wB=36.779X10-3 radian 

vB=0.22394X 10M3 in. 

Us= -304.69X 10d3 in. 

w,= - 14.32 X 10v3 radian 

z~~=~GI.G~XIO-~ in. 

uc= -114.61X 10m3 in. 

wD= -18.4X 10P3 radian 

uD= -133.66X 10Y3 in. 

uD=3.7242X10P3 in. 

wE=7.4813X 1O-3 radian 

21,=30.507X 10e3 in. 

uE=-41.708X10m3 in. 

+=59.979X 10m3 in. 

uo= 114.52 X 10m3 in. 

(501 

It is pointed out that certain of these displacements differ 
considerably from those given by the esact solutions of the 
matrix-calculus and growing-unit methods, mainly because 
the relaxation solution is approximate and in it joint G is 
permitted to displace radially. 

The unknown reactions given by the foregoing relaxation 
procedure are: 

N,=-2851.1 in.-lb 

T,=380.21 lb 

NF= 140.16 in.-lb 

TF= -224.09 lb 

NG= -440.45 in.-lb 

T,=G48.18 lb 

(51) 

J 

Consideration of the equilibrium of the half ring gives: 

BF,=380.21+224.09-648.18= -43.88 lb 

zFv=o 

ZMG=-2851.1+380.21(57.941)-440.45+ 

1 

(52) 
140.16-224.09(7.0294)-18,635 

= - 1331.8 in.-lb 

The moment rquilibrium unbalance is approximately 7 per- 
cent of the applied moment and is considered satisfactory 
for engineering purposes. If a more accurate representation 
of the final deflected shape and consequently of the bending- 
moment diagram is desired, several more operations in the 
relaxation table could be unclertaken and the residuals at 
C and D further reduced. 

The bending-moment diagram given by the reactions of 
equation (51) is shown in figure 9 along with that of the 
exact solutions. The cstcrnal unbalanced moment of 1331.8 
inch-pounds is applied linearly along the ring as a distributed 
moment. If this unbalance is not distributed in this man- 
ner, it would be concentrat.ed at either joint A or joint F, 
depending on the direction in which the bending m0ment.s 
are calculated, and would lead to large errors in the bending 
moment, in the neighborhoocl of that joint. It is seen from 
figure 9 that the agreement between t,he exact and relaxation 
solut.ions is good. 

It is pointed out that, by slightly modifying the determi- 
nation of the influence coefficient for joiut D when E is fixed 
ancl F and G are free to displace radially, a table similar to 
table 17 could be established and solved by matrix-calcu- 
lus methods. The slight modification is t.o make V,=O 
in the equations corresponding to table 17. Such a solution 
is essentially the growing-unit method, except that the ring 
is combined from joints C and D to A and F, respectively, 
rather than from A to F. The total displacements in each 
degree of freedom will be the same in each approach. 

CONCLUSIONS 

This report contains recommendations as to the choice of 
the most expeditious method of solution of the simultaneous 
linear equations represented by the operations table and the 
external loads. The operations table is first established in 
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IbwRE 9.-Bending-moment diagram for oval-shaped ring with internal bracing. Positive bending moment decreases curvature. 
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accordance with Soutliwcll’s suggest,ions and, togcthcr with 
the cstcrnnl loads, clcfincs completc4y the problem of stress 
distribution in a rcinforccd panel or of the moment tlistribu- 
tion in a fuselage ring. However, the following gcncralized 
suggestions can bc made: 

1. In most reinforced-panel problems the use of the rc- 
lasation procedure is aclvantagcous. 

2. Solution of the equations defining a reinforced-panel 
problem by means of the electric snalogue is advisable when 
many closely related problems have to bc investigated. 

3. Ring problems are best solvecl by matrix methods. 
4. In very complicatecl ring problems a combination of 

matrixmethods with the growing-unit ancl relaxation methocls 
may become aclvisable. 

POLPTECHNIC INSTITUTE OF BROOKLYN, 

BROOKLYN, N. Y., June 25, 1947. 
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TABLE 3.-RELAXATION TABLE FOR REINFORCED 
PANEL-PROCEDURE 2 

[Forces arc in lb; displacements, in in. X lo-‘] 

TABLE I.-OPERATIONS TABLE FOR REINFORCED PANEL 
\, Force y.4 YE YE YP YI YK YN Yo 
Operntion \ 

\ ----__~~- 

[Form are in lb; displacements, in in. X IO-‘1 

L-q yA ~ yB ~ yB / yr ~ yJ 1 yK j yv 1 y” 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

-11” -1” 
vA=-21G5........-.. 110 -4.3 

~~~- -____ ~__ 
0 -14.3 -81.3 -: 24.3 20 -20 70 50 

(l)=-1.452........... 5.9 -5.9 81.3 - -8.9 d9.4 -3.0 0 0 
ppp-____-- 

5.9 -20.2 0 -33.2 -49.4 -23.0 70 
(Z)=-0.901...._...... 3.6 -3.6 7. 2 -7.2 49.4 

9.5 -23.8 7.2 -40.4 
ob,oae 2=--1.850....... -7.4 7. 4 -14.8 ~ ~ 

-- 
-5.4 -42. 2 

p--_---- 
0 -28.4 : 

14.8 -14.8 ~ 14.8 - 
___ -- __. 

2.1 -1G.4 
vs=-0.297 . . . . . . . . . . -0. ti lG.4 

p------ 
1.5 0 -8.2 -40.8 

(3)=-0.089 . . . . -2.8 2.8 --4 1 I ~~ i 4" x 
--~__- 

-1.3 2.8 
(4)=-O.SZj........... -3.3 3.3 

-4.0 G. 1 
I)L,,~~L ,=-I.08 . . . . . . . . 4.3 -4.3 

-0.3 1.8 -10.3 - 
(l)=-0.188 .._...... 0.8 -0.8 10.3 - 

~~__~ -- __- 
0.5 1.0 -3.1 -21.4 -9.0 : 

(2)=-0.390 . . . . . . 1.6 -1.G 30.1 -3.1 21. 4 -2.3 -1 
~____~ 

~__ -0.G 
---- 

2. 1 3. 1 -G.2 
-!.3 

-11.3 4.8 8.2 
o,,,ook 2=-0.412....... -1.6 1.6 -3.3 3.3 3.3 -1.6 1.6 

_-__ -____ --.__ 

-;: ; 
1.0 -0.3 -2.9 -3.3 4.0 3.2 6. 6 

(4)=-O.U...... 0.6 -1. 1 1. 1 -0.8 8.0 -0.3 -G.Y 

0 1.5 -1.3 -1.8 -4.1 0 2.9 -0.3 

_... 2.00 
51. 2 

4.00 
-110.4 

2.00 
51.2 

8.00 

46.8 
2.00 

-101.6 
4.00 

4G.8 
2.00 

_._. 

_.._ 
46.8 2.00 

2.00 51.2 
-101.6 4.00 

4.00 -110.4 
46.8 2.00 

2.00 51.2 

-8.00 -8.00 8.00 -4.00 

8.00 -8.00 5.00 -8.00 4.00 

-54.8 6.00 46.8 2.00 
-8.00 8.00 -54.8 6.00 

0.00 -59.2 2.00 51. 2 
8.00 4.00 6.00 -59.2 

2.00 
-52.2 

2.00 - 
51. 2 

VA=1 .._._.__._... -50.8 
ll*=l........-.... 2.00 
OR=1 .._.__....... 46.8 
llp=l............. 2.00 
v,=1 ._.__......- --- 
m=l.._._.__._... .-. 
ox=1 ._____.._._._ 
vo=l-...-.....-.. --- 
Vb,ocL ,=l __._- -. 
VA=UB=U,= 

1 
-4.00 

ll.v=l..._..._.. 
VhlO,.lr 2=! .._..... 
pB=B,P=VR= 

1 
4.00 

WJ=l........... 
(1) v.,=ux=l..... -4.00 
(2)V.a=tlK=UJ=IL 44;; 
(3) vB=vp=l.-... 
(4) VB=I)P=I’K=l 4.00 

_... 
46.8 

2.00 
-50.8 

2.00 

_._. 
_... 

4.00 

48.8 

4.00 

-4.00 -4.00 

TABLE 2.-RELAXATIOS TABLE FOR REISFORCED 
PAKEL-PROCEDURE 1 

Cycles of operations shown should be repeated until residuals are considered negligibly small. 
Forces arc in lb; displacements, in in. :X10-‘I - 

.- 

.- 

.- 

.- 

.- 

- 

- 

- 

- 

YO 

50 
0 

50 
9 

59 
14 

i3 
-14 

59 
0 

59 
il 

130 
-158 

-2G 
4 

-22 
0 

-22 
-2 

-24 
-5 

-29 

YF Y , YK YN 

-20 20 
-__ 

-20 20 
9 110 

__~ 
-11 130 

9 -473 
____ 

-2 -343 
0 343 

____ 
-2 28 0 

-30 28 
-41 1 

-- __ 
-71 29 

71 5 
-- ~ 

II 34 5 

0 39 
8 -8 

-f‘ -11 31 

_____ 
-; 104 20 

____ 
5 124 
0 -124 

-20 

-- 

Fi 

-20 
5 

70 0 
-15 i0 

19 218 

4 288 
14 -372 
18 -84 

-28 14 

-10 
19 

-- 
9 

-153 

-iO 
0 

-70 
3 

-144 
144 

0 
8 

: 

-: 

2 

-1 

--(ii 
5 

-62 
-4 

--OR 
0 

-Ii6 
-48 

-114 
135 

21 

TABLE L-RELAXATION TABLE FOR REISFORCED 
PANEL-FIXED E?;DS 

[Forces are in lb; displncements, in in.XlO-9 

‘\ Force YA Ye YB 

Operation \ 
\ _----- 

External forces....... -1;; .-Iio. .-.--io- 
&lock I=-2.5........m 

~____ 
-110 -10 

on=2.35.........~.... 110 5 -2:: 
~~__ 

-5 -218 
v,=4.R5.............. 0 218 

~--- 

_--- 

-4. i 

-4.i 
-8. 1 

-I?.8 
-G. 9 

- 

-8. 

-. 

-. 

-. 

-. 

-. 

-. 

- 

- 

- 

- 

Yll 

-19. i 
19. 7 

-- 

i.4 
-- 

3.4 
3. 8 ipp-- 

i.0 
oA=O.l3i5............ -7.0 
_~---- 

0 
(1)=0.124............ -9.5 
____ ~--~ 

-0.5 
(2)=-o.0292.e. 0. 1 

-0.4 
cn=0.143............. 0. 3 

__- --- 
-0. 1 

(3)=0.285............ 1. 1 

i. 2 
0.3 

7. F, 
0. 5 

-- 
8. n 

-0. 1 
-- 

i. 9 -i.9 -- 
-7.1 

(4)=0.2zS.e........ / A:: 

( 1.9 

-1.1 
-0.9 

-2.0 

YK l’s 

-4.0 _. 
- 10. 3 -80. 0 

_______ 
13.0 -48.Y 

I I 
0 

-5. 1 48.Y -1.i 
-14.3 -8O.G 

42.3 . . ..__ 

-5G.G -80. G 
56 G -1.9 

ll:lj i.61 -i.4 0.3 ..~... 
0 --52.5 
0.2 . .._. 

____ 
0.2 -82.5 

-0.3 -1.4 

0.5 TG-0 
1.6 -15.i 0.5 

______ 
2.1 0 0.5 
1.8 -1.8 1.4 

__--__ 
3.Y -1,s 1.9 

____ 
-0.1 -83.9 

13.G . . ..__. 
____ 

13.5 -83.9 
-13.5 0. 5 

0 (p3.4 

“\ Force y.* 
Oprration 

‘\-- 

Estrm:\l forccs...~... 
VA=-2.36.........-.. 

-- 

-120 
120 

(l)=-2.02..-....... 
-__ 

(2)=-l.i23.......... 
_~--_ 

us=-0.357........... 

0 
8. 1 

s. 1 
6.9 

15.0 
-0.8 

(3)=-O.s:~.........~./ 2:: 

< 

- 

- 

- 

- 

-- 

- 

- 

-. 

-- 

(4)=-0.959........../ 2: 

1-o 

Fl 
-5 

0 

i 
0 

o.~=i.33.......~...... 

I i 
0 

-__ 

1: 
-5 

ohlnrt *=3.5......m..-- -14 2: p------ 
14 -19 28 

U~=O.371..........--- 1 19 1 
_~____ ~__~ 

15 
i 

29 
0~=1.385..........~~- 0 3 

~---~ 
15 0 32 

-3. 4 

-3. 4 

-2.4 

or=-1.025........... t 
4 48 
0 -48 52. 5 

-0.1 

52.G 

52.6 

52.6 
11. 7 

40.9 
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TABLE 5.-OPERATIONS TABLE FOR REINFORCED PANEL-GROWING-UNIT METHOD 

[Forces are in Ih; displacements, in in.XlO-41 

‘\< YA Ye YK YP YJ YK YN Yo Yn Ys 

3peration 
\ --_- ____ ___---- ___- 

(1) DA=1 _________._......... -50.8 
(2) on=1 ________________ -.-.. 

4: 8 
-5ii.2 

46.8 _._...__ ..___... ________ ________ _ _ _ _ _ _ _ _ _ _ 
__. __ _ _ _ :. _ _ _ _ 

(3) CR=1 .____________________ 
2’ 

2 -10:. 6 
5T.2 -.isTI‘ .__.... ________ _.___._ ‘_ 

4 ________ ___-___- ________ _______ 
(4) UP=1 . .._.____________ -.-. 51.2 -110.4 5T.2 ________ ________ _______ ___..__ 
(5) ?I,=1 _.___________________ . . .._..._. __.._.__ 4:. 8 

5:. 2 
-10:. 6 4 46 8 _ . _ _ _ _ _ _ _ _ _. _ _ 

(6) vx=1.- _..________________ . .._....__ _...____ 2 4 5Y.2 _______ ___--_. 
(7) UN=1 _....________________ ._______.. __.-.-__ __-_-.-_ _--_-.-_ 46.8 -2 4 -10:. 6 46.8 
(8) oo=l._....._.____________ . . . . ..__.. -.-_.-.- -.-.-._- .__. -.. 2 51.2 4 -1A.4 2 5:. 2 

-__ -~______ ---_____ ______ 
(9) 0,0362X(2) ..- _....... 0. a7 -2 0.07 1.86 . . . . . .._ . . ..__.. ________ _____... . ..---- ------- 
(IO) (l)+(9) ___.._._.......... -50.7 0 46.9 3.8 _ _ _. _ _ _ _ _ _ _ _. 
(11) 0.921X(l) .___......_..... -46.9 1.85 43. 2 1.35 _..._... ..__.___ ___...__ ____.... .------ ------- 
(12, 0.0695X(2) . ..__._..__.___ 0. 1 -3.8 0. 1 3.5 __. .._____. ..______ ____.... ----- -- ------- 
(13) (3)+(11)+(12) ._________. -58.3 9.4 46. 8 2 
(14) 0.0758X(l) . . . . .._..__..__ -Z.Q 

1.85 
I?2 3. 5 0.2 _.._.___ ----.--- ------- ------- 

(15) 0,923X(2)... . ..__.._. -51.3 1.85 47.6 . . . ..___ ..-. . . ..__.. _.-...__ . . . . .._ ._.____ 
(16) (4)+(141+(15)...- _...... 
(17) 0.828X(13) _.._......... . . ...” . . ..-.-. 

9.4 -62.6 51.2 ___.____ __._____ . . . ..__ __._.__ 
-48.3 7.9 3i.8 1.7 _.._____ _.___.__ . ..---- ------- 

(18) 0.158X(16) .__.__ ___. _... -..- 1. 5 -9.9 0.3 8.1 _.______ ___.____ ----.-- ---.---- 
(19) (5)+(17)+(18) . .._._ _._....... _....... 

2.9 
0 -62.5 13. 8 46. 8 2 

(20) 0.170X(13) .._.____..__.. ____...... _..._.. 1.6 8.0 0.3 
(21) 0.845X(lfi) . . .._..______ __.___.... ___.__._ 7. 9 -52.8 1. 7 43. 2 
(22) (6)+(20)+(21) . . . ..______ ..__.._... .._.___. 

. ..” __._ . ..” ._._ 
13.7 -68.9 51.2 

(23) 0.79X(19! . . . . . . . .._____ __..___.__ .._.____ -49.4 10.9 3;.0 1.59 .._.... (24) &19X(22) . . . . . . .._.... __ ____ __.. .___ _.... _. 2. 6 -12.7 0.38 9.83 _...... . .._... 
(25) (7)+(23)+(24) . . . . . . . . .._ . . ..____ __._..__ . ..___.. 0 -64.2 15. 4 46.8 2 
(26) 0.21X(19) ._.............. __ . . .._... . . . .._._ -13.1 El.9 9. 8 0.42 ._...__ 
(27) 0.81X(22) . . . . . . . . . . . . . ._ . .._..__ 11.1 -54.1 1. 61 41.2 ._.._.. 
(28) (8)+(26)+(27) . . . . . . . . . . . . . . . .._ . . . . .._. . . . .._.. 0 0 15.4 -68.8 2 51. 2 

TABLE 6.-REI,ASATIOT\’ TABLE FOR REIKFORCED PASEL-GROWIKG-USIT METHOD 

[Forces are in lb; displacements, in in. X lo-‘] 

External loads ....................... -120 ...... ...... _ ..... .._._. ...... ...... ...... . .._ ._ _ ..... 
-2.37 X (10) ...................... 120 ...... -111 -9 

__- 
0 ...... -111 -9 

-1.975 x (1.1). ............................. ...... 115.2 -18.8 -92.5 -4.0 ...... ...... .~.- ------ 
-0.444 x (16) ....................... ..... -4.2 ...... -0.9 -22.7 ...... ...... ...... _ ..... 

__- 

0 0 -93.4 -26.7 ..... ...... ...... ...... 
-I.657 x (19) .............................. ...... ...... ...... 103.7 -22.9 -77. fi -3.3 ...... ...... 
-0.742 X (28). ............................. ...... .._ ... _ ..... -10.2 49. R  -1.5 -37.9 ...... ...... 

0 0 -79.1 -41.2 ...... ...... 
-1.45 X (25) ............................... ...... ...... ...... ...... ...... 93.2 -22.4 -67.9 -2.9 
-0.925 X (28). ._._...._ .................... ...... ...... ...... ...... ...... -14.2 M.6 -1.8 -47.4 

.__- ____ ___. ~- 
0 0 -69.7 -50.3 

TABLE 7.-OPERATIONS TABLE FOR CIRCULAR RING 

-___ 
(1) wn=lO-J radian ._______________________ -281.95 -49.079 -29.966 -4.733 
(2) 1Ld=lo-ain.. ....... . -_-_- _____ _____ -__ -49.079 -52.2% 64.675 -22.441 
(3) ms=lO-Jrsdian..............---.-.-.-. -29.966 64.675 -439.849 31.443 
(4) os=lO-3 in..-....-...............- ..... -4.733 -22.441 31.443 -12.338 
(5) us=lO+ in ... ___..__.___..._.._ ....... 64.675 51.516 -50.642 20.14 
(6) wc=lO-J radian.. .._...______.___._.- .- _._._...._.._ _ __._ .......... 56.5117 8.842 
(7) uc=lO-2 in ._................__.-.-.--- - .... .._.._.._. _._ ........... 6.632 0.524 
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TABLE S.-RELAXATION TABLE FOR CIRCULAR RING 

.- 

.- 

.- 

___.-- 
-23.9 

0 

I- 
Esternalforces.....-..........----------- -1.84 -8.75 -55.0 59.5 38. 1 -53.1 
-0.00778X(A).................-..-....... 1.84 0 0.7 -0.1 -0.1 0 

-___ -___ -____ 
-8.75 -54.3 59. 4 38.0 -53.1 

-02X(E) . .._.__..............._......... i 8.75 -14.0 4.3 -8 0 0 
_~____~__ __-__ 

-68.3 63. 7 30.0 -53.1 
-0.353x(c).~.......~..~............~... i -8.6 -2.2 -2. 2 53. 1 

_-___ ___- .___~- 

-77,8X(O)................-.-....-...... : !I 
-76.9 61. 5 2i. 8 

-472 -34.0 -0.2 i 
~____._____ ~-__ 

-2.98X(E) . . ..~.........._.........~.. 
~-----__-- 

-23.9 
0 

-23.9 
0 

-23.9 
23.9 

0 

-0.0121 

TABLE 9.-OPERATIOSS TABLE FOR EGG-SHAPED RIKG 

8.92216 -2.fiYF14 3.9Riil 
-327.866 11.409i --13.1014 

Il.4697 -4.00991 3.4352 
-13.1014 3.4352 -30.05&i 
-61.242 -8.iOZfii 0 

8.10267 0. 66158 0 
0 0 26.2058 

(1) o”=lo-’ ill ........................ -3.34873 
(2) w~=lO-( radian ..... ..~......_ ... 8.92210 
(3) ue=lO-4 in ........................ -2.69614 
(4) ue=lO-4 in ................. .._ ... 3.967il 
(5) av=lO-4 radian . ..~~......__ .. .._ .............. 
(R) uc=lO-4 in....................- ... ._.........._. 
(7) uc=lo-~ ill...........~ .......................... 
(8) u~=lO-4 in.. ............ .._ ................. .._. 

0 
0 

26.2058 ..~~~~........ 
-5. 24iifii -i.3524 
-0.88Y29 -l.llYCO 

-27.0833 -1.0375 
-1.0375 -1.2400 

TABLE lO.-RELASATIOX’ TABLE FOR EGG-SHAPED RING 

-403X(8)....... . . . . . . . . . . . . . 
._-.. - 

1336X(F)........~ . . . .._....... 
--. - 

250X(l)......... .~ . . . . . . . . . . ..~ 
____ - ------ __-.--- - 

409X(F).... ..: 

-592 2960 451 JIX 0 
(1 

____- 
-ii; / -5;; 

-2485 ---I;,, 63 

‘Ii.5 0 I:380 451 -8 0 0 
_-- __-- 

0 0 I 
-501 475 135 43 n 

9 -ifjO --13X 19 0 i 285 0 

0 2x5 
II 24 

" 309 

-9.4X(J)~..... ~.......~... 

I I II I I 111111111 I II I I III1 I III 
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TABLE ll .-OPERATIONS TABLE FOR OVAL-SHAPED RING 

Operation 
‘1, 

NI, 
(h-lb) 

NR 
(in.-lb) 

NC 
(h-lb) 

-38.489 
-1.8576 
45.876 

-432.37 

-7:. 623 
-38.489 

1.8576 
45.876 

_________. 
1.8576 

-2.2277 
-13.781 

49231 

-!. 8576 
-2.2277 

13.781 

-. 

3 

8 

6 

45.876 
13.781 
49.974 

-77.623 

-10:. 34 
45.876 

-13.781 
49.974 

-7.1311 
5.90% 

-4.577, 
14.662 

5.9021 
-454.34 

6.72.x 
-78.411 
-38.489 

1.8571 
45.876 

-4.5778 
6.7238 

-12.093 
0.5569( 

-1.8576 
-2.2277 

13.781 

14.662 
-78.411 

0.5569( 
-84.510 

45.876 
-13.781 

49.974 

NR 
(in.-lb) 

-38.489 
-1.8576 

45.876 
-649.24 

-18.056 
-67.080 

-5.9020 
16.025 

I 

= 

- 

-38.489 
-1.8576 

45.876 
-432.37 

1;:: :;; 
1.8576 

45.876 

sC=lO-J in . . . . . . . . . . . . . . . . . . . . . . . ..-. 
I 

\ Forms and 

T I J  

(lb) 

45.87D 
13.781 
49.974 

-77.623 
0 

-100.34 
46.876 

-13.781 
49.974 

1. X.576 
-2.2277 

-13.781 

-:.9231 
0 

-1.8576 
-2.2277 

13.7x1 

1.857R 
-2.2277 

-13.781 

1:;: !g 
-40.533 

-4.5778 
1.3355 

45.876 
13.781 
49.974 

-67.080 
-40.533 

- 126.37 
-14.662 

-1.3355 

-5.9020 16.025 
-4.5778 1.3355 

-14.662 -1.3355 
-7.1310 0 

0 -1.888fi 

TABT>TS 12.-GROUP OPERATIOSS I?; GROWISG-UKIT ;LfETHOD FOR SEGXfEST ABC 
‘NR=-4~4.31~~~~+6.i23PbR-7R.11111~-(R.II.S. in Nw-rquation)=O 

RR= ~i. i?3~~~~R-12.nY1~R+n.55(iYn~~~~-(R.II.S. in RI,--1quation)=O 

~Tn=-7X.411~~in+0.5SliY~~vo-X1.510ns-(1~.II.S. in Tn--rquation)=O 1 
I. III I\’ I I II 

vr=10-3 ill. WC= IO-3 radian vc=10-3 in. ur=lfl-J in. 
wc=or=lrc=C u‘4=cc~=uc=o “a=wc=uc=o u*=a’r=vr=o 

___---- 

5.902n 
- 1.5778 

14.662 
_--~-. 

-0. 026434 
-0 38424 

0. 19549 
___- _- 

-2.6618 
10.699 

-1.8871 
3.2615 

(: 
0 

(-103) Xrixbt-band sidr in rquation for: 
NR, h-lb.. ...................... ..- ............... 
RR, lb. . .._...._....................- .............. 
Tn, lb ._ ........................................... 

45.876 
13.781 
49.9i4 

-3x. 489 I.8576 
-1.8576 --2. 2277 
45.876 -13.781 

-0.2lR31 
-0.23971 

0. 74177 

IO. 699 
-3x9. Rfi 

-10.053 
-53.771 
-3% 4x9 

I. 8:17F 
45.876 

0.035554 
-0. 1736.3 
-0.11)720 

0.017847 

1.1763 

0. <5x253 

(IO? Xdisplarrments ot joint B: 
rcr,,,radian ........ --_.- .___....._......__ ........... us, in ............................................... 
II*, in ......... .._...............__ ................ 

-I. 8871 3.2615 
-10.093 -53. 771 

-6.7529 -10.615 
-10.615 -54.199 

-1.85% 45.876 
-2.22ii -13.781 

13.781 49.9i4 

Resultant, forcrs and moments: 
R~,lb~ ... ..__ ...................... .._._ ............ 
NC, h-lb. .._....._..__ .............................. 
Xc,  lb........................-...--..- .............. Tc, lb.............................- ................. 
ND. h-lb ............ .._._....................- ...... 
Rn,  lb _._.___.......__...................._...__ ..... 
TD, lb.. .. ..__.........................- ............. 
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N~=-389.56m1-10.093n11-53.771z1~-(R. H. S. in iVd=O 
&=-10.093z~r-6.7529z111-10.615z1~-(R. H. S. in Rc)=O 

T~=-53.771~11-10.615z111-54.199z1~-(R. H. S. in Tc)=O 1 

‘\ 

ChOUP 

Displacement 

V VI VII VIII 
- 

\ 

‘\ 
\ 

‘\ 

(I)=1 WI) = 10-a radian vr,=lO-3 in. u~=lO-z in. 
1u”=vu=uD=o (I)=o,,=uD=o (I)=wD=uD=O (I)=w”=crD=( ) 

\ 

‘\ 
\ 

Operation \ 
\ -__ ___-- --~ ___-- - 

(-1) X right-hand sido in equation for: 
NC, in.-lb..............-....-....-..-................. 10.699 -38.480 1.8576 45.876 

Rc ,  lb . . . . . .._...._...................______._._._..... -1.8871 -1.8576 -2.2277 13.781 
Tc, lb.. . . . ..___ ___..__........ . . .._............... 3.2615 45.876 -13.781 49.974 

~~ - 
Magnitudes of (II), (III), and (IV): 

I,I...................................-.-............... 0.021497 -0.25291 0.046327 -0. OOQQOlQ 
ZIII................-....-.-.-.-...........-...-.-.-..... -0.53843 -2.3436 0.10521 0.85346 
I,,‘........................-...-............ 0.14430 1.5564 -0.32084 0.76472 - - 

Forces and moments: 
Rs, ,  lb ._._._...__..... . . . . . ..____._............. -0. Y4505 6.7928 -0.74924 0.77749 
ND, in.-lb...............-.....-.................-..... 6.7928 -346.88 -16.697 -43.745 
R D ,  lb . . . . . .._..._....................----.-.-.......-. -0.74924 -16.697 -5.6500 -12.458 
TD,lb...............-.-.-.........-.............-.-... 0.77749 -43.745 -12.458 -50.817 
Nn, ix-lb . . . . . . . . .._..._. ~.~ . . . . . ..____._._._._....... 

: 
-38.489 -18.5i6 45.87fi 

R R ,  lb . . . . . . .__._____..................-...-.- -.-...-. 1.8576 -2.2277 -13.781 
Tn, lb . . . . . . . . . . .._..._...__. -.._- ____.___._........... 0 45.876 13.7Rl 49.974 

TABLE 13.-GROUP OPERATIONS IN GROWING-UNIT METHOD FOR SEGMENT ABCD 

TABLE 14.-GROUP OPERATIONS IN GROWING-USIT METHOD FOR SEGMEST ABCDE 
NR= -346.8tivr-16.69zvrr -43.745.rvrrr-(R. H. S. in NR) =0 
Rn=-16.6Q7rv1-5.6500zvrr-12.458rvr~r-(R. H. S. in Rd=O 

T~=-43.745~~~-12.458zv~~-50.817~~rr~-(R. H. S. in TE)=O 1 

Displacement 

IX X XI XII 

‘\ 
(V)=l w~=lW radian “R=lo-J in. ir~=10-3 in. 

\ 
l(‘R=UR=IIR=O (V)=vn=un=O (V)=mR=ILs=O (V)=wR=cn=O 

\ 
\ 

\ 
\ 

Oprration \ 
\ - -__---___--__---~ 

(-l)Xright-hand side in equation for: 
N~,in.-lb................-....-......-........~...... 
Rn,  lb . .._._........................_____.......... 
T~,lb~.~~................-.~....~............. 

Magnitudes of VI, VII, and VIII: 
z”I.................................-.-............~.. 
I”II.................----.-.-.-...............~.~..... 
Z”,II...............-.------------------............... 

Forces and moments: 
R, , ,  lb- . . . . . . . ..____................-.--............. 
,~r~,in.-lb..~.~~~.....~..~.~..............-........... 
R R ,  lb.....................--......-.--......... 
Tn,lb . . . . . . . . . ..______................-...-..... ~.~. 

RF,  lb . . . . . . . . ..__.....__._...........___._........... 
Ro,lb..- . . . . . ..______.................._..._.. ~~... 

6. i928 -38.489 1.85i6 45.876 
-074924 - 1.8576 -2.2277 13.781 

0.77749 45.876 - 13.781 49.974 
__-__ 

0.028042 -0.16186 0.037474 -0.0022427 
-0.42660 -4.6760 0.35713 0.59436 

0.095744 2.1885 -0.39100 0.83963 

-0.36050 4.1055 -0.31703 0.19226 
4.1055 -53.3. 92 2g: “2;; -29.579 

-0.31703 --38.099 --53.432 
0.19226 -29.579 -53.432 -76.322 
i -5.9020 -4.57i8 -14.662 

16.025 1.3355 - 1. 3.3.55 
- 
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TABLE 15.-DETERMINATION OF TOTAL DISPLACEMENTS IN GROWING-UNIT METHOD 

I 
Related tables WB, VB, and UR lrom table 12 (11). (III). and (IV) from table 13 or 15 

- 

1k!=10-3 in. zr=l wn=lO-sradinn 

IV V VI 

Prime displacement 

0~ =10-s in. wc=lO-3 radian oc=lO-J in. 

III 

Drollp operations 

0 

1.0470 
217.61 

-48.436 

-:. 3100 
-32% 09 

90.518 
II 

li. 184 
-51.518 

29.771 
-605.73 

-44.646 
~- 

0.021497 
-0.25291 

0.046327 
-0.0099019 
-0 w63062 
-0.19736 

0.010939 
0.019788 

-0. a30407 
-0.0017462 

--- 
-11.444 

-0. ,53843 
-2.3436 

0.10521 
0.85346 

-0.56732 
1. 75.52 

-0.38395 
0.78438 

-0.50331 
-0.64546 

A. 095744 
2.1885 

-0.39100 
0.83963 
0.16615 

-0.68618 

1 0.028042 
__.____....__ -0.16186 

0.037474 
__.__-_..-.-. -0.0022427 

1 0.024494 
0.022857 

‘rota1 displacements .._....___.____.. 1 -605. G-1 G64.55 --i2.28G 1 -C05.73 1 -22.975 1 -94.731 1 9n. 127 

(X), (XI). and (XII) from table li 
----- 

Related tables I WI), (VII,, and (VIII) from table 14 or 15 
- ____-- 

I’rimr displncement 

\ 

‘\ 7”=1 us x= 10-3 1211 ion 

IX X 

‘\ 

Group opcrntions 
‘\ -~-- __ - 

Magnitudes of 
eroup displnce- 

men;ss,;p$itly 

balancing 

Un=lW ill. II x=10-3 in. 

XI XII 

TIX=l or=lO-3 in 

XIII XIV 

I- 0 1.04i6 
21i. 61 

-48.436 
0 

-3.3109 
-328.09 

90.518 

1: 184 
-51: 518 

29,771 
-605.73 

-44.646 
--___- 

. . . . . . . . . . . . . . . . . . . . . ..__ 
1 

__..__.__....... 
-0.051804 A. 0351”8 

0.50354 -0.5379; 

nil .................. ............................................... .._ ..................... 
xIII.......................-.~ .. ............................ 0.0094398 
XIV.. ....................................................... ..~. ... . ....... -0.017182 

1 
1 

-42.620 ) 32. 511 -fw5. i3 -44. Glti 
------__ 

‘I’otnl displncrnwt~ts ..~ .___............ -605.73 6.2331 

TABLE 16.-GROUP OPERATIONS IN RELAXATION METHOD FOR SEGMENT ABCD 
RA=-7.1310o~+5.9020ws- 
Ne= 

4.5778oef 14.662ue-(R.H.S. in RA)=CI 

5.90200~-454.34waf 6.7238oa- 79.411ve-(R.H.S. in N&=0 
R~=-4.15776o.~+R.7238~~- 12.093ve+0.55690us-(R.H.S. in RB)=O 
TB= 14.662~~-78.41lz~~sfO.S5C90o~- 84.510u~-(R.H.S. in Tn)=O 1 

Group xv XVI XVII 
~- ~-- __- - - 

Displacement wc=lW radian 
----- 

UC= 10-s in. uc=lW in. 

Operation ac=uc=wD=oD=uD=0 wc=uc=wo=oo=uD=o wc=“c=t”D=“*=uo=o 
--- 

C-103) X right-hand side in equation for: 
R., ,  lb . . . . . . . . . . . . ..__............-------........._..... 
NC,, in.-lb-. __.. ._...__...._...._.__------......._____. -6.489 

0 
RB, lb _________ . ..___............________......._ ..__ 1.8876 4:. -1. b576 876 

TR. lb _______________..............-....-.-.-.-.....___. 
-2.2277 

45.87R 
13.781 

-13.781 49.974 -___- __-.--- 
(1W) X displacements of joints A and 6: 

04, in............-..........---..-.....--...--.......-. 4.0195 
WE, mdiAn....----........----------------.----....-.-. 

-0. iO895 
-0.32255 

1.2253 
vs,in........-.-.-........--...-.-----...------......-- 0.054293 -1.7642 -0.014540 
us.in..-......~...-.-----.......~......-.-...--..--..~~ 

0.098882 
0.70554 1.5277 

-0.33579 0.82205 - ---____ _------____ _ - 
Forces and moments: 

Nr,in.-lb..............--.-.---.........-..-.---....... -346.56 Rc.Ib..................-.-.--..-..-...........---.-...~ -17.678 -40.662 -17.678 
Tc,lb . . . .._...._...__.._.---.----.---.-......----.-.. 

-5.4150 
-12.928 -40.662 

No,in.-lb..................-....-------------..--..---. 
-12.928 

-38.489 -50.203 

RD, lb __._.__.__................. ___._.._______.....___ 
-1. E576 

1.8576 
45.376 

TD, lb __________________..--......----...---------....-. 
-2.2277 

45.876 
-13.781 

13.781 49.974 
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TABLE 17.-GROUP OPERATIONS IN RELAXATION METHOD FOR SEGNIENT CDEF-G 
N~=-649.24~~~-18.056~~-67.08n11~-5.9~12C~p+l6.025~~-(R.II.S. iI Nx)=ll 
R~~-l8.056~c~-~(.957~x-40.533fr~-4.5778~v+l.~~35CUo-(R.~.S. in Rx)=0 
~~~-67.080~~~-40.533~H-126.3i~~~-14.B62~p-l.3355~~-(R.H.S. in TX)=” 
R~=-5.9020u’x-4.577Fo~--14.662u~-7.1310U~ -(R.H.S. in RP)=O 
Ro=l6.025zc~+1.33550H-1.3355U~ -1.8886uo-(R.H.S. in Rol=C 1 

XIX xx 
I 

OKXlp XVIII 
- 

-.------- Displacement zu~=l0-3 radian 

Operation r”c=oc=uc=vD=nD=o 
-__ ___~ 

(-103) X right-hand side in equation: 
N~,in.-lh....................-...........-.-........... -38.489 Ra, lb _.....__........__....~.....~..............._..... 1. 85i6 
TN, lb . .._.....__.____...............-.............._... 45.876 RF, lb. _......... ..__......... ._........._.._........ 0 Ro. lb ._.._...__..........__......._____.........._..... 0 

on=lO-3 in. 

~“c=“~=,l~=wD=llD=o 

45.8X 
-13.781 

49. Bi4 
ii 

-1.8576 
-2.2277 

13. i81 
0 
0 

-0.032ii5 -0. (108775 
-0.19092 -0. X327 

0. 23168 0.79421 
-0.32667 -1.1229 
-0.57676 -1. 1900 

(103) X displacernmts ol joints E, F, and G: 
wx,.radian........................................~.~ .. 
UN, 'p ............ .._._.....................-~ ......... 
11K,,rn......~......................................~~~ .. 
"Y, In......................................- ............ vo, in.~..................~........- ..................... 

-0.liO3 
-0.43970 

0. 74456 
-1.1111 
-2.2753 

4.5. 8X 
13.781 

I.8576 
-222ii 

- 13. 871 
11.535 

-Ii. 2441 
12. 70G 

Forcrs a~(1 mom(nts: 
NC, in.-lb.. .. .._ ................. .._ ................... 
Rc,  lb.. .......... .._....................._ ............. 
Tc, lb- .._...._........_.........................__ ..... No, in.-lb...................--..........-- .......... ..- 
R, , ,  lb .... ..__.._......_............._..........._- ..... 
‘1’~s lb........................-.-.........-...........- - 

-38.48Y 
-1.85X 
45. 8;G 

-392.46 
11.535 

-42.305 

49.9;4 
-42.305 

12. 7Oli 
-50.259 

TABLE 18.-GROUP-OPERATIOXS TABLE FOR RELASATIOS METHOD 

[Forces and moments at joints A, B, E, F, and G arc zero for all operations] 

‘\ Forces und monlcnts 

‘\ 
\ 

\ 

‘\ 
Opwntion 

NC 
(in.-lb) 

Tc 
(lb) 

-34F.45 --1T.G78 -40.662 -38.489 1.8576 45.876 
-Ii. 6i8 -5.4150 -12.928 -1.85% -2.2277 13.781 
-40.662 -12.928 -50.203 45.876 -13. i81 49.9i4 
-38.489 -1.8576 45.8iF -392.46 11.535 -42.305 

1.85iF -222ii -13. i81 11.535 -Ii. 2441 12.706 
45.876 13.i81 49.9T4 -42.305 12.TO6 -50.259 
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TABLE 19.-RELAXATION TABLE FOR OROUP OPER.ATION S 

- 

Operntion 

(2) (it??b) step NB 
(in.-lb) 

NC 
(inAb) 

-_ -- 

-- 

-- 

-- 

-- 

-- 

-. 

-. 

-. 

- 

- 

- 

. 
- 
. . - 

- 

1- -. _ _ _. _ _ _ _ _ _ _ _ _ 
Externalloads.. _.__._ -_.-.-- . .._._ ________.. 
302X(K)-------.-.-.--.--...-.---.-----------. 

-260 
258 -402 

-18.4X(M) . . . .._._._._._______---.-...--.-.-. -2 -4050 
7100 

214X(N) __.._._.__._._._............-..-.- -_.. 
-45 

0 
3050 

-3150 I -45 
20 

- 100 
-314 

-25 
-13 

-414 
210 -15.7X(K)..............-...-................, 

___~ ~- 

-0.7GX(XVII) .._._._................._...__._ 
-38 

38 
-204 

-35 - 
337 

0.310 0.025 0.15B 324.7G ii. GO< 
I 

7’n 
W) 

-2,bY 
xxi 

-239 
-228.20 

I$; 

-:'. 450 

($ 

Check table ~..........____.._..............-..........~...... ) I L 

. 
- 

- 

- 

Ru (lb) 

- 
-YliG 

1218 

252 
0 

ti7 
0 _- 

_............. . . . . . . ..__...~_ 

. . ..~ ̂ .............. 

-1. i34 -0.001 

2 .................. -1&4X(M) .................................. 

:I ................ 214X(N)......~...................~ ........... 

5.. .... ...... .... -15.7X(K). ............................. .._. 
--__---- 

6.......~ ......... -0.iGx(sv11) ............................... 

252 87 
-244 -21 

8 4G 
55 0 

-2 
18 

10 
6. :390 

~__-- 
0.047 

-Y 
- 10. G50 -0. i50 Check table . . .._~_........ . . . . . . .._...~._.... . . . .._........ 

- 
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